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Problem Setup

Primary Light Generation: Given a music sequence X = {x1, x2, . . . , xn}, find
a mapping function f(·) that transfers it to the corresponding stage light sequence

Y = {y1, y2, . . . , yn}, i.e., X f−→ Y .
• n: Number of frames.

• xi ∈ Rm: Mel spectrum with m bands.

• yi ∈ R3
∗: Primary light represented in Hue, Saturation, Value (HSV) color space.

Previous Rule-Based Solutions

Classification models are used to divide music pieces into several categories
(e.g., by style, chord, and emotion) and manually define stage light patterns for
each category. These methods mainly suffer from the following shortcomings:

• Low Interpretability with No Creativity: The manually pre-defined light pat-
terns are not only limited but also lack interpretability [7].

• Limited to the Classification Model:

− Coarse Grain: For instance, some chord classification methods only sup-
port 24 major and minor chords, ignoring other colorful chords. Similarly,
most style classifications support only broad categories like pop, jazz, and
rock, overlooking finer categories. For instance, pop black metal and sui-
cidal black metal have completely different expressions and styles but may
both be classified as metal or even rock, sharing similar light patterns, which
is unacceptable.

− Low Classification Performance: Classification tasks in the Music Infor-
mation Retrieval (MIR) field remain challenging due to limited open-source
datasets [8]. Insufficient classification accuracy can significantly impact the
overall system efficacy.

Our Contributions

• In this paper, we propose a novel perspective for Automatic Stage Lighting Con-
trol (ASLC) by framing it as a generative task rather than a rule-based classifi-
cation process. To support this claim, we develop an end-to-end deep learning
framework validated through both quantitative analysis and human evaluation.
Results demonstrate that our method closely matches human lighting engineer-
ing performance, outperforming conventional rule-based solutions.

• We introduce Skip-BART, a novel end-to-end deep learning framework that ad-
dresses the aforementioned generative task for ASLC. Building on BART, our
approach incorporates adapted embedding and head layers to support both
music and light modalities. Additionally, we introduce a novel skip-connection
module to enhance the relationship between music and light in a fine-grained
context. We also implement pre-training and transfer learning mechanisms to
improve model performance under limited training data. During inference, a
Restricted Stochastic Temperature-Controlled (RSTC) sampling method is em-
ployed to ensure both diversity and stability in the generated results.

• We present the first self-collected stage lighting dataset, named Rock, Punk,
Metal, and Core - Livehouse Lighting (RPMC-L2). To address ethical and copy-
right concerns, we release only the processed features and ground truth labels.

Proposed End-to-End Solution

Fig. 1: Network Architecture

A. Network Architecture:

• Feature Extractor: OpenL3 [1] for mu-
sic input & Embedding Layer for tok-
enized light input

• Backbone: Frozen pre-trained Piano-
BART [6] with trainable LoRA [5]

• Skip-Connection Module: Concate-
nate music and light within each frame
before inputting to decoder, enhancing
the rhythm alignment

Fig. 2: Workflow

B. Workflow:

• Pre-training: Music MLM pre-training enhanced by adversarial learning [9], which
is utilized to distinguish between the recovered sequence and the original sequence.
(Note: Light data is not utilized in this stage to avoid information leakage.)

• Fine-tuning: End-to-end training with the maximum likelihood estimation (MLE) objec-
tive (θ: network parameters):

θ∗ = argmax
θ

EX ,Y ,t[log P(yt|X , y1:t−1; θ)] (1)

• Inference: Add range restrictions to Stochastic Temperature-Controlled sampling [4]
to avoid overshooting and model degradation.

Fig. 3: Light Example

Experiment

A. Quantitative Analysis: We first measure the similarity between different
methods and the ground truth using RMSE and MAE. The results demonstrate
that our proposed Skip-BART achieves superior performance compared to pre-
vious rule-based methods and a series of ablation studies, suggesting its effi-
ciency.

Method Hue RMSE Value RMSE Hue MAE Value MAE

Rule-based [3] 48.67 93.39 43.43 86.55

Skip-BART 36.13 60.74 28.72 51.27
w/o skip connection 36.89 68.33 29.44 58.34
w/o light embedding 51.04 67.25 41.50 54.87
train from scratch 36.63 67.49 28.83 57.22
pre-train w/o [MASK] 49.97 64.45 42.07 52.63
pre-train w/o discriminator 50.40 68.09 41.52 56.54

Tab. 1: Quantitative results. Bold = best, underline = second best.

B. Human Study: We then conduct a human study, asking 38 participants to
evaluate the lighting produced by different methods across six dimensions [2],
scoring from 1 to 7 (the higher, the better). The results show that our Skip-
BART achieves performance similar to that of real human engineers, significantly
outperforming previous rule-based methods.

Method Emotion Impact Rhythm Smoothness Atmosphere Surprise

Ground Truth 4.50 4.48 4.61 4.62 4.49 4.34
Rule-based [3] 3.12 2.65 2.54 2.56 2.77 2.35

Skip-BART 4.69 4.39 4.50 4.32 4.32 3.83
w/o skip connection 4.31 3.78 4.54 4.43 4.11 3.50

Tab. 2: Human evaluation result. Bold = best, underline = second best.
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