TRIPLE-BERT: DO WE REALLY NEED MARL FOR ORDER DISPATCH ON RIDE-SHARING PLATFORMS?
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Problem Background

 Arbitrary Order Arrival: Orders can arrive at any time without a fixed schedule.

» Centralized Assignment: A centralized platform efficiently assigns orders to

vehicles, often bundling them with en-route orders.

 Dynamic Route Updates: Vehicles continuously update their routes to reflect

the shortest possible path.

« Order Management: Unassigned orders return to the platform for reassign-

ment but may be canceled if not confirmed within a specified time threshold.

« Challenges: The observation and action spaces are extremely large in ride-
sharing scenarios. With 1000 vehicles and 10 orders, the number of combina-

tions can approach 10°.
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Fig. 1: Workflow

Previous MARL-based Method
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- Step 1: Estimate the Q-value for each vehicle-order pair y; ; ; at time ¢.

« Step 2: Decide order assignment A; by maximizing the global Q-value:

— 7: Vehicle set
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— J¢: Order set at time ¢
— i j.+ = Q-Network(Vehicle-i, Order-j)

« Step 3: Update the estimator (policy) using TD-learning.

« Shortcomings:

— Decentralized methods face challenges of unstable environments and poor

cooperation.

— Centralized methods encounter the Curse of Dimensionality (CoD).

Proposed SARL-based Method

We propose a centralized SARL solution based on a variant of TD3 for large-scale trip-
vehicle assignment tasks. (i) To address the large observation space, we propose a BERT-
based network, leveraging its self-attention and parameter reuse mechanisms. (ii) Regard-
iIng the large action space, we introduce a novel action decomposition mechanism that di-
vides the joint action probability into the virtual action probabilities of each individual vehicle.
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Fig. 2: Network Architecture

A. Network Architecture

« Actor (Updated by Policy Gradient):

— Each vehicle and order information is treated as a token, from which features and
relationships are extracted using Actor-BERT.

— Generate a virtual matching probability between vehicle ¢« and order j at time ¢, de-
noted as & ; ;.

* Critic (Updated by TD-Learning):

— Each matching vehicle-order pair is treated as a token, and features and relationships
are extracted using Critic-BERT.

— Estimate the Q-value based on the output of Critic-BERT.

B. Action Decomposition

« Basic Principle: Construct a structural policy space:
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— z(-): A virtual increasing mapping function.

— h(Ay): Defined as h(A;) =

(4, 9)]a; j+ = 1}.

» Action Sampling: Solve Equation 1 by replacing y; ; ; with log &7; ; ;-
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 Policy Updating:
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- Dataset: A real-world ride-hailing dataset from Manhattan, New York [6].

 Training Process:

— First, pre-train the encoder component using a decentralized IDDQN ap-

proach.

— Then, train the entire network using a centralized TD3 approach.

« Performance: Triple-BERT outperforms other MARL methods by optimizing
pickup time, which leads to a higher order service rate and total reward.
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Fig. 3: Method Comparison
Method Reward Service-Rate Delivery Detour Pickup Confirmation
DeepPool [1] 12723.85 0.91 11.53 247 7.77 0.06
BMG-Q [9] 13036.29 0.92 10.57 190 7.61 0.10
HIVES [4] 12365.11 0.89 11.04 228 7.99 0.03
Enders et al. [3] 12041.62 0.90 1228 290 7.94 0.80
CEVD [2] 13157.96 0.94 11.36 2.31 7.37 0.06
Triple-BERT 14730.48 0.98 11.53 252 5.73 0.13

Tab. 1: Average performance across multiple periods. The last four columns denote the time for each metric (unit:

minute).
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