
Autonomous Locomotion of a Rat Robot
Based on Reinforcement Learning

Zitao Zhang1, Yuhong Huang2, Zijian Zhao1, Zhenshan Bing2, and Kai Huang1

1 Sun Yat-Sen University, Guangzhou, China,
zhangzt9@mail2.sysu.edu.cn

2 Technical University of Munich, Munich, German

Abstract. The rat robot is a soft compact quadrupedal robot with the
same size as real rats. It is difficult for such robots to learn effective
motions on complex terrain owing to their underactuated nature and
limited sensors. This paper proposes a novel approach for the rat robot
to learn adaptive motion on rugged terrain based on reinforcement learn-
ing. The training architecture is designed for the rat robot’s nonlinear
control structure. We gather and analyze perception information based
on changes in time slices to monitor environmental changes during robot
walking. Our proposed framework demonstrates a significant reduction
in training convergence time, from millions to hundreds of thousands,
compared to commonly used reinforcement learning methods. We eval-
uate the efficacy of our approach on a varied set of simulated terrain
scenarios, which include various obstacles and terrain undulations. Our
results show that our approach effectively achieves efficient motions on
complex terrains designed for small-sized robots.

Keywords: robotics, autonomous control, reinforcement learning

1 INTRODUCTION

Rat robot is a kind of bionic quadrupedal robot with the same size as real
rats, which has a compact structure together with flexible rope-driven tendons.
Locomotion of this kind of compact bionic robot is worthy investigating, for
not only better understanding the nature but also special robot applications.
Leg structure of quadrupedal robots make them more competitive than wheeled
robots in rugged terrains and complex environments. Furthermore, compared
with larger dog-sized quadrupedal robots such as ANYmal[2], small robots[3]
exhibit increased flexibility, making them well-suited for navigating constricted
spaces due to their smaller size, lower weight, and reduced cost. Fig. 1 shows
the digital twin of the rat robot we use in this research, based on our previous
work[1].

Motion potential of the rat robot acquires for drugging with state-of-art
methods. Fig. 2 shows the end-effector space of legs, which needs huge efforts for
conventional methods to fully explore. Meanwhile, deep reinforcement learning
has gained attention in legged locomotion of quadrupedal robots in recent years.

2 Zitao Zhang et al.

Fig. 1. The rat robot is designed with soft actuated components and supports more
flexible robot motions.

(a) Front Leg (b) Hind Leg

Fig. 2. Reachable range of legs. For the flexible leg driven by dual motors, the motion
space is located in the Y-Z plane of its own Cartesian coordinate system.

Conventional methods acquire manual effort to model both the robotics system
and the target task scenario, often depending on the experience of designers. In
contrast, reinforcement learning is a viable approach for generating robot gaits
for complex terrain by analyzing the robot status during walking. However,
reinforcement learning for small-sized quadrupedal robots like rat robots has
not been widely studied.

Locomotion based on reinforcement learning is however challenging because
of nonlinear dynamics and weak feedback from limited sensors. On one hand, the
soft structure and rope-driven tendons theoretically poss an infinite number of
digrees of freedom(DOF)[4]. It contributes to complex time-serious relationship
between control signals and environmental feedback. For example, a 60 Hz motor
signal takes dozens of executions to allow the robot to achieve a tiny movement of
lifting a front claw. On the other hand, due to limitations in size, weight, area,
and power (SWAP), conventional sensors are frequently unfeasible for small-

Adaptive Quadruped Locomotion of a Rat Robot 3

sized robots[5], which is critical for common-size robotics locomotion. Light-
weight sensors acquire for additional processing to attain comparable levels of
perception to higher-quality counterparts[6]. Therefore, actions and observations
among timesteps are supposed to be considered together. And further process
of time-serious sensor data is significant to motion learning.

In this paper, we propose a new method to conduct autonomous locomotion
of the rat robot to overcome complex terrain based on reinforcement learning.
This approach is aimed at overcoming the limit of light-weight sensors and struc-
ture challenge on the rat robot to better explore motion potential of small-size
soft robots. The normalized action is generated with a policy network to cover
certain timesteps in order to obtain stronger physical interaction. Based on the
observations from light-weight sensors of the robot, we design a time cluster to
filter noise of time-series observations during interaction with the environment.
The state is generated based on the processed observations. Besides, we deign
the reward function with three factors are designed to adapts to the robot mo-
tion scenarios. Experiments are conducted on four challenging scenarios and the
results prove the validation of our method. Main contributions of this work are
summarized as follows:

– We design the action of the rat robot generated by a policy network that cov-
ers a period of timesteps. Complex end effector space and nonlinear dynamics
is explored with reinforcement learning to adapt to challenging terrain.

– We propose a time cluster updating method to process sensor data obser-
vations among high-frequency action conduction. Effective states generated
from compromised sensor data observations reinforce perceptual feedback,
contributing to improved training efficiency.

2 Related Work

Reinforcement learning, as an area of machine learning, aims to let an agent learn
to get maximum long-term rewards with actions in the environment. Today deep
reinforcement learning utilize the feature representation ability of deep learning
to strengthen the decision-making ability of agents, contributing to outstand-
ing end-to-end control performance[7]. Despite achievements that reinforcement
learning has made, there are still gaps between robotic control tasks and bench-
mark problems in reinforcement learning[8]. For instance, continues states and
actions makes information extraction more difficult. Besides, the inherent exe-
cution of physical systems results in frequent delays to be solved.

Generally, reinforcement learning methods can be categorized into model-
free and model-based approaches [9]. Model-free methods are relatively simple
to implement and allow for end-to-end control by sampling from the environment
and generating control signals. Xie et al. [10] developed a novel method that can
modify reward function simultaneously with training, while Lee et al. presented a
proprioceptive feedback method that improved model robustness. However, these
methods can be computationally intensive and time-consuming. Faced with this

4 Zitao Zhang et al.

problem, Hwangbo et al. [11] proposed a framework that combines simulation
and real environments.

On the other hand, model-based methods require the construction of a virtual
environment to facilitate on-policy learning. Although they can accelerate con-
vergence speed, they often require significant computation. As a result, many new
methods combine model-free and model-based approaches, leveraging predeter-
mined models of system dynamics to guide model-free learning. These methods
offer a promising direction for model-free methods by incorporating additional
information. For instance, Haojie et al. [12] proposed an evolutionary trajectory
generator-based model that optimizes the output trajectory’s shape for a given
task, providing diversified motion priors to guide policy learning. Sanket et al.
[13] developed a probabilistic MPC method that considers model uncertainty in
long-term predictions, leading to improved accuracy.

However, most reinforcement learning approaches have been designed for full-
sized robots such as the MIT Cheetah [14], Anymal [2], and BigDog [15]. Small-
sized robots, facing constraints such as limited sensor information, low-powered
micro-controllers, and computing resources, pose unique challenges to reinforce-
ment learning. Many current approaches rely on expensive graphics cards and
high-perception tactile sensors to build an altitude map of the environment,
which may not be applicable or effective for small-sized robots.

3 Architecture Overview

Fig. 3 shows the architecture of the proposed method. First of all, we analyze
the structure of the rat robot and give the definition of action in locomotion,
which is a 8-Dimension vector in the part A Control Signal Generation. In our
architecture the actions are sampled from a policy distribution, generated by a
policy network. With the rat robot’s equipment limits taken into account, the
sensor data observation within a timestep is available. Secondly, on the basis of
control signal execution with several timesteps in the part B High Frequency
Timestep Execution, a time cluster is designed to filter noise and conduct post-
process to improve perceptual efficiency. A integrated state is then established
as the part C shows. Besides we design the reward function in Section 4.3. With
markov nodes generated including actions, states and rewards, learning iterations
are performed to update the policy and then train the robot to overcome rugged
terrain.

.

4 Methodology

4.1 Action and Observation Space of the Rat Robot Platform

The rat robot based on our previous work is a type of small-scale bio-inspired
robot, designed with soft actuated components that differ from dog-size quadrupedal
robots. The bio-inspired legs of our robot are designed to closely mimic the body

RS
Highlight

Adaptive Quadruped Locomotion of a Rat Robot 5

a{

Fig. 3. Architecture: Part A implements a reinforcement learning method to generate
action signals. Part B is the execution of motor signals within a high frequency time-
serious piece. Part C processes the sensor data observations and generates the reward
and the state of a markov node.

structure and movement pattern of natural mice, while the flexible structures
pose challenges to traditional quadrupedal motion control methods, particularly
when reinforcement learning is implemented. As Fig. 4 shows, each leg of the rat
robot is driven by tendon ropes with two PWM servos on the hip. Each servo has
a rotation range of 180 degrees. As a result, the direct control signal in a single
time step is denoted as q ∈ R8

clip,R8
clip := [−π

2 ,
π
2]. We design the action as a set

of normalized servo angles conducted in several timesteps, which id defined as

at = { 2
π
q}Nstep×8 (1)

where Nstep is the number of timesteps that one single action is conducted in.
Besides we get the normalized range at ∈ R8

clip,R8
clip := [−1, 1].

As part A of Fig. 3 shows, we implement a policy network to generate actions.
The Control policy is parameterized as a Gaussian distribution with a diagonal
covariance matrix.

πθ (a | st) = N (a | µθ (st) , σθ) . (2)

A deep neural network (DNN) structure is employed to generate the mean µθ (st)
of the distribution. Additionally, the standard deviation σθ is generated by a
separate and independent network layer, which facilitates exploration during
training. The complete algorithm is outlined in Algorithm 1.

6 Zitao Zhang et al.

Y

Z

Fig. 4. Structure of the bionic leg, consisting of an elastic limb, a driving tendon and
two actuating motors. End point of the limb moves in the 2-Dimension end-effector
space, driven by two actuators. For the flexible leg driven by dual motors, the end-
effector space is located in the Y-Z plane of its own Cartesian coordinate system.
Schematic diagram of the leg movements is cited from [16].

Observation of the rat robot is determined by the sensors. In addition to
structural peculiarities, limited sensor equipment affects perception. The main
sensor of the rat robot is an IMU at its body center, which provides 3-axis
acceleration and 3-axis angular velocity oIMU = {a,g}. With calculation of
the integrated library, the three-axis velocity and quaternion can be obtained
o′IMU = {v,Q}.

Taking into account our development progress on the physical robot, we
assume that 4 foot pressure sensors are available. In reality, the accuracy of
pressure readings from foot sensors is low and unstable due to the limitations of
physical device performance. Without considering the dynamical characteristics,
we focus on the state of whether each leg is in contact with the ground or not.
Therefore, the pressure sensor reading is converted to a Boolean value as cF,k =
{0, 1}, where k = 1, 2, 3, 4 refers to four legs. To summarize, the observation
space of the rat robot can be defined as

ot = {v,Q, cF,k} (3)

4.2 State Generation with Time Cluster Updating

On the basis of the observation space, we design a post-process of sensor data
observations among timesteps, which is aimed at reducing the dimensionality of
complex environment observations. A data pool of length Nstep is set to store
sensor data observations among Nstep timesteps, referred to as a ”time cluster”.

Adaptive Quadruped Locomotion of a Rat Robot 7

Algorithm 1 RL with Rat Robot

Require:S0,State with initial environment
β, experience replay buffer
α, learning rate
Nstep, the number of time steps a time cluster contains
ϵ ∼ N (0, 1), Gaussian noise for exploration

1: Initiate the policy
2: while Not Converged do
3: Get normalized action signal at ← πθ(s) + ϵ
4: for i = 1 to Nstep do ▷ Generate One-Step time cluster
5: Conduct motor control (q1, q2) for each leg
6: Get sensor data observation of one single timestep
7: Append sensor data into Timing Pool
8: end for
9: Generate State S of current time cluster
10: Append the transition (st, at, r, st+1) into β
11: if β is full then
12: Update Policy
13: Reset β
14: end if
15: end while

As part B of Fig. 3 shows, an RL step comprises a segment of servo signal con-
duction within Nstep timesteps. Part C describes the process of state generation,
as detailed by Fig. 5.

During the execution of actions within a time cluster, sensor data is collected
for further process to obtain valid sensory information with filtered noise. We
use the mean filter to process the sensor information. The processing of the
three-axis velocity information is as follows:

Vi =

Nstep∑
k=0

vi
k

Nstep
(4)

where i from 1 to 3 corresponds to three directions, and vik is the kth sensor data
of velocity within a time cluster. In a continuous run, the computation at the
end of a time cluster needs to be reduced in order to balance the computation
time within each timestep for real-world execution. We modify Equation 4 into
an incremental form in order to update the amount of state information in real
time:

Vi
k =

k − 1

k
Vi

k−1 +
1

k
vik. (5)

The processing of the angular velocity follows the same approach. Note that the
selection of filter types is not the focus of our research, where other filters can be
used as well. As for the foot pressure sensor, cF,k = 0 only when sensor readings
are all 0 in a time cluster.

8 Zitao Zhang et al.

Fig. 5. Process of State Node Generation within a Time Cluster

After generation of a Timing Cluster, the processed perceptual information
together with the information of its own action in the current RL step form the
State s in the Markov node

st =
(
at, r, ⃗Vvel, ⃗Vgyro, V⃗Q, cF

)
(6)

where r is the reward value, ⃗Vvel ∈ R3 is the filtered velocity, ⃗Vgyro ∈ R3 is the

filtered angular velocity, and V⃗Q ∈ R4 is the filtered quaternion. Acceleration is
not included because experimental experiences show that the calculated velocity
performs better.

4.3 Reward Function

In order to traverse challenging terrain among several scenarios and avoid getting
trapped, the reward function is designed as follows:

r = rforward + rtrap + renergy (7)

which consists of three items considering different factors. rforward is the main
part of the reward function aimed to drive the robot to move ahead, which is
defined as

rforward =

{
Wvel

⃗Vvel · ⃗udir
⃗Vvel · ⃗udir < Tvel

−Wvel else
(8)

where Wvel is the weighting factor, ⃗udir is a unit vector for direction. Tvel is
the threshold of velocity because a overlarge velocity correspond to the robots
falling down in an unstable situation. Second factor rtrap punishes overturning
and causes terminating one episode, which is defined as

rtrap =

{
0 nair < 10 (about0.5s)

−Ktrap else
(9)

Adaptive Quadruped Locomotion of a Rat Robot 9

where nair is the number of sustained states when all four feet are off the ground
at the same time. nair is calculated as follows:

nair =

{
0 Σ4

k=1cF,k > 0

nair + 1 else
(10)

The last factor renergy is

renergy = WeΣ
8
i=1|ai,t − ai,t−1| (11)

where We is the weighting factor. It is designed to improve coherence between
movements and reduce drift.

5 EXPERIMENTS

This section provides a detailed description of the experimental setup employed
to assess the performance of the proposed framework. The motion of the rat
robot is analyzed to demonstrate the effectiveness of our proposed method. Sub-
sequently, we elaborate on the efficiency of the algorithm.

5.1 Experimental Setup

Four terrain scenarios were constructed for the purpose of training the rat robot
to navigate, as illustrated in Figure 6. The size of the terrain scenarios is designed
to simulate the real-world environment encountered by small robots. Table 1
shows the hyper parameters in the experiment.

Fig. 6. The proposed approach can adapt the rat robot to all 4 test scenarios.
(S1)Planks: Gallop over planks with wide gap(width=10 cm).(S2)Uphill: a 10-degree
slope. (S3)Logs: Upon a pile of logs. (S4)Stairs: Micro stairs between two platforms.

10 Zitao Zhang et al.

Table 1. Hyper-Parameters

Parameter Symbol Value

Length of a time cluster Nstep 5
Batch Size NB 2048

Maximum timestep of one episode Ets 2000
Weight of rforward Wvel 5.0
Weight of rtrap Ktrap 5.0
Weight of renergy We 0.1

The rat robot is a small quadrupedal robot that has dimensions of 40 cm ×
25 cm and features 8 degrees of freedom for control. Each leg of the robot has a
step length of 9 cm and a foot clearance of 1.5 cm. Using the physical platform
utilized in our prior research, as depicted in Figure 1, a digital twin was created.

The simulations are carried out using the MuJoCo robot simulation plat-
form[17](Version 2.1.0), operating on a Ubuntu 18.04 system. The training ma-
chine is a server equipped with dual Intel Xeon Gold 6234 Processors and 256GB
of memory. Each training session is allocated one physical core and requires less
than 2GB of memory.

5.2 Performance in Different Scenarios

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Step 1e6

50

0

50

100

150

200

250

300

350

Ep
is

od
e

R
ew

ar
d

Scenario
Plane
Planks
Uphill
Logs
Stairs

Fig. 7. Training curves on 5 simulation tasks.

Adaptive Quadruped Locomotion of a Rat Robot 11

The rat robot successfully completed all four tasks with policies learned from
scratch. Fig. 7 shows the training curves in the four scenarios together with the
basic plane scenario. All five policy agent converge successfully with different
episode rewards. That results from terrain characteristics in different scenarios.
The landscape in the basic plane scenario is simple and relatively easy to pass
through, resulting in a larger converged episode reward. The scenario of stairs
seem to be most difficult so the episode reward is lower than others. It consists
of both rugged terrain on the horizontal plane and height difference of slope,
which is in some way a combination of (S1) and (S2). Validation experiments
are performed by using trained policies to drive the robot and render the screen
for observation. Results show that the rat robot passes through all scenarios
successfully.

Table 2 shows the performance metrics of four scenarios. We made 50 at-
tempts in each scenario with respective trained policies. Performance of (S1),
(S3) and (S4) is consistent with their training curves. It is interesting that al-
though the converged episode reward of (S2) is not the smallest of four scenarios,
average velocity in (S2) performs relatively small. Such phenomenon indicates
that height variation is more challenging for the rat robot’s movement, needing
to be further studied. Besides, speed performance of (S4) is also worse than (S1)
and (S3), but the success rate is higher.

Table 2. Performance in four scenarios. 50 validation experiments are completed for
every scenario.

Scenario name Sucess rate(%) Episode reward Average Velocity(cm/s)

(S1)Planks 72 210.3 3.24

(S2)Uphill 80 98.6 1.62

(S3)Logs 78 102.1 3.18

(S4)Stairs 86 99.4 2.26

5.3 Comparison With benchmarks

In order to objectively evaluate the effectiveness of the proposed method, we
compare it with three representative benchmark algorithms. The proposed archi-
tecture is based on the policy optimization reinforcement learning. Considering
that, we pick there model-free reinforcement learning algorithms to be compared
with our method: A2C, PPO and SAC. To make fair comparisons, the bench-
mark algorithms uses the same action and reward design as our method, but the
core technique of the time cluster design is not implemented. As a result, the
uncompressed timesteps make the episode steps of benchmark algorithms Nstep

times the length of our method. In comparison, episode rewards of them are
divided by Nstep inversely. The implementation of these benchmark algorithms
is based on the Stable-baselines3 Platform[18].

12 Zitao Zhang et al.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Step 1e6

50

0

50

100

150

200

250

300

350

Ep
is

od
e

R
ew

ar
d

Method
Ours
PPO
SAC
A2C

Fig. 8. Training curves of our method and baseline algorithms on the plane.

As shown in Fig. 8, the proposed method significantly outperforms the bench-
mark approaches just on the plane. All the policy has to learn the parameters
from scratch. Although benchmark algorithms are also able to converge, valida-
tion experiments show that their trained policies are not sufficient to drive the
robot’s forward motion on flat ground. In four challenging scenarios the con-
clusions are consistent. That is because general reinforcement learning methods
cannot learn from the weak sensor feedback within a simple short timestep. In
conclusion, the compression of states is necessary for improving training effi-
ciency.

6 CONCLUSIONS

This paper proposes a reinforcement learning method to generate motion of the
rat robot for complex terrain. We design a reinforcement architecture to ex-
plore the nonlinear kinematics and dynamics of the small, flexible rat robot.
Through post-processing of time-series data during the robot’s interaction with
the environment and time cluster updating that integrates self-action status and
perceptual information from the environment, the initially large state space is
compressed to enhance training speed. A multi-factor reward function is for-
mulated to adapt to complex terrain. We design experiments with four rugged
terrain scenarios to validate the performance of the proposed method and it is
compared with benchmark algorithms to prove effectiveness of the time cluster.
Experiments show that the proposed method makes success in all challenging
scenarios tested and outperforms other benchmark algorithms.

Adaptive Quadruped Locomotion of a Rat Robot 13

References

1. Lucas, P., Oota, S., Conradt, J., Knoll, A.: Development of the neurorobotic mouse.
In: 2019 IEEE International Conference on Cyborg and Bionic Systems (CBS). pp.
299–304. IEEE (2019)

2. Hutter, M., Gehring, C., Jud, D., Lauber, A., Bellicoso, C.D., Tsounis, V.,
Hwangbo, J., Bodie, K., Fankhauser, P., Bloesch, M., Diethelm, R., Bachmann, S.,
Melzer, A., Hoepflinger, M.: Anymal - a highly mobile and dynamic quadrupedal
robot. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). pp. 38–44 (2016)

3. Neuman, S.M., Plancher, B., Duisterhof, B.P., Krishnan, S., Banbury, C.,
Mazumder, M., Prakash, S., Jabbour, J., Faust, A., de Croon, G.C., Reddi, V.J.:
Tiny robot learning: Challenges and directions for machine learning in resource-
constrained robots. In: 2022 IEEE 4th International Conference on Artificial Intel-
ligence Circuits and Systems (AICAS). pp. 296–299 (2022)

4. Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature
521(7553), 467–475 (May 2015), https://doi.org/10.1038/nature14543

5. Duisterhof, B.P., Krishnan, S., Cruz, J.J., Banbury, C.R., Fu, W., Faust, A.,
de Croon, G.C.H.E., Janapa Reddi, V.: Tiny robot learning (tinyrl) for source
seeking on a nano quadcopter. In: 2021 IEEE International Conference on Robotics
and Automation (ICRA). pp. 7242–7248 (2021)

6. Fankhauser, P., Bjelonic, M., Dario Bellicoso, C., Miki, T., Hutter, M.: Robust
rough-terrain locomotion with a quadrupedal robot. In: 2018 IEEE International
Conference on Robotics and Automation (ICRA). pp. 5761–5768 (2018)

7. Wang, X., Wang, S., Liang, X., Zhao, D., Huang, J., Xu, X., Dai, B., Miao, Q.:
Deep reinforcement learning: A survey. IEEE Transactions on Neural Networks
and Learning Systems pp. 1–15 (2022)

8. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey.
The International Journal of Robotics Research 32(11), 1238–1274 (2013)

9. Nguyen, H., La, H.: Review of deep reinforcement learning for robot manipulation.
In: 2019 Third IEEE International Conference on Robotic Computing (IRC). pp.
590–595. IEEE (2019)

10. Xie, Z., Clary, P., Dao, J., Morais, P., Hurst, J., van de Panne, M.: Iterative
reinforcement learning based design of dynamic locomotion skills for cassie. arXiv
preprint arXiv:1903.09537 (2019)

11. Hwangbo, J., Lee, J., Dosovitskiy, A., Bellicoso, D., Tsounis, V., Koltun, V., Hut-
ter, M.: Learning agile and dynamic motor skills for legged robots. Science Robotics
4(26), eaau5872 (2019)

12. Shi, H., Zhou, B., Zeng, H., Wang, F., Dong, Y., Li, J., Wang, K., Tian, H.,
Meng, M.Q.H.: Reinforcement Learning With Evolutionary Trajectory Generator:
A General Approach for Quadrupedal Locomotion. IEEE Robotics and Automa-
tion Letters 7(2), 3085–3092 (Apr 2022), conference Name: IEEE Robotics and
Automation Letters

13. Kamthe, S., Deisenroth, M.: Data-efficient reinforcement learning with probabilis-
tic model predictive control. In: International conference on artificial intelligence
and statistics. pp. 1701–1710. PMLR (2018)

14. Hyun, D.J., Seok, S., Lee, J., Kim, S.: High speed trot-running: Implementation of a
hierarchical controller using proprioceptive impedance control on the mit cheetah.
The International Journal of Robotics Research 33(11), 1417–1445 (2014)

14 Zitao Zhang et al.

15. Raibert, M., Blankespoor, K., Nelson, G., Playter, R.: Bigdog, the rough-terrain
quadruped robot. IFAC Proceedings Volumes 41(2), 10822–10825 (2008)

16. Rohregger, A.: Mouse gait: Visual analysis of front leg. Website (2021), https:
//www.notion.so/Rodent-Gait-89ae86764cc243cfa1d58a04dace5a15

17. Todorov, E., Erez, T., Tassa, Y.: Mujoco: A physics engine for model-based control.
In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.
pp. 5026–5033 (2012)

18. Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-
baselines3: Reliable reinforcement learning implementations. J. Mach. Learn. Res.
22(1) (jan 2021)

