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Abstract— Small robots encounter considerable difficulties
in learning effective motions on complex terrains owing to
their underactuated nature and nonlinear dynamics. In this
paper, we present a novel approach for robot motion generation
that implements reinforcement learning, based on simplified
exploration of the robot’s action and time slice conduction.
Our approach controls the robot’s actions using normalized
signals and hierarchical mappings on mathematical space,
which facilitates the learning process. We execute action in the
timeslice to make efficient interaction with the environment.
The effectiveness of our methodology is evaluated across a
diverse range of simulated terrain scenarios, supplemented
by physics validation. Our results show that our approach
performs effective on complex terrains that are designed for
small-sized robots.

I. INTRODUCTION

The rat robot is a kind of low-cost compact quadrupedal
robot designed to closely resemble an actual mouse [1]
as Fig. 1 shows, which is promising in bionomics research
and disaster response. On the one hand, the drive structure
of quadrupedal robots make them more competitive than
wheeled robots in rugged terrains and complex environments.
On the other hand, small robots [2] exhibit increased
flexibility compared with large dog-sized quadrupedal robots.
Therefore, they are well-suited for exploring constricted
spaces due to the advantage of size, weight and cost.

Reinforcement learning in quadruped locomotion has
gained attention as an alternative approach for conventional
methods. In principle, conventional systems require manual
effort to model both the robotics system and the target
task, often leading to laborious tuning. As an alternative,
reinforcement learning is a viable approach for generating
robot motion for complex terrain through analysis of the
status when the robot is walking. However, research of
reinforcement learning for small-sized quadrupedal robots is
limited. When it comes to rat robots, the limited resource
allocation and streamlined structure could hardly support
the effectiveness of baseline reinforcement learning methods.
Therefore, this paper focuses on the motion generation of the
rat robot in a source-limited scenario.

Implementation of reinforcement learning for small-sized
quadrupedal robot locomotion is challenging due to varied
action scales and continuous control signals. Firstly, various
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Fig. 1. The rat robot is designed with soft actuated components and
supports more flexible robot motions.

structure designs of robots endow them with complex
nonlinear dynamics. Specifically, soft actuated legs of the
rat robot, which possess an infinite number of digrees of
freedom(DOF) theoretically [3], render kinematic modeling
challenging and result in higher control errors. Secondly,
a huge high-dimensional action space of multi-joint robots
makes rewards sparse because direct control signals to the
robot typically fall within a small time scale. For example, it
takes dozens of executions of a 60Hz motor signal to allow
the robot to make a tiny movement such as lifting its front
claw. Excessive frequent instantaneous control would lead
to increased environmental noise, which hinders the robot
from obtaining effective feedback on its strategies from scene
interactions. As a result, how to simplify exploration of the
robot’s action is a fundamental problem for reinforcement
learning of the rat robot.

To tackle the above challenges, we propose a novel
approach for terrain-aware motion generation of the rat
robot, based on reinforcement approach. This approach
is aimed to simplify exploration of the robot’s action
and space. The rat robot’s motions utilize normalized
signals and hierarchical mappings in mathematical space,
which significantly improve training speed while maintaining
motion flexibility. By partitioning the motion cycle, we apply
action signals to different time slices, enabling the robot to
interact extensively with the environment at a macroscopic
level. We successfully train effective motion policies in four
challenging scenarios, and motion patterns are performed
on the real rat robot to prove its feasibility. The Main
contributions of this work are summarized as follows:

• We propose a novel hierarchical motion generation
approach that controls the robot’s actions based
on normalized signals and hierarchical mappings on
mathematical space to simplify the learning process.

• We normalize the execution time of action signals
with time slices. Interactions with the environment are
promoted to facilitate action learning.
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Fig. 2. Architecture for learning adaptive motion of the rat robot on complex terrains.

II. RELATED WORK

Deep reinforcement learning (DRL) has been extensively
utilized for legged locomotion of quadrupedal robots in
recent years [4]. DRL methods can be generally divided
into model-free ones and model-based ones. The model-free
approach [5] employs actions such as torques and joint angles
to enable end-to-end control of the robot. However, learning
efficient gaits from scratch is challenging in quadrupedal
robots due to their complex nonlinear dynamics and sparse
rewards. Model-based reinforcement learning methods [6]
typically utilize a predetermined model of system dynamics
to enhance training. ETG-RL [7] utilizes an evolutionary
trajectory generator to optimize the shape of the output
trajectory for the given task, thus providing diversified
motion priors to guide policy learning. Lee et al. [8] employs
neural networks to extract ground information, which is not
directly available to the robot’s sensors, mined from the
robot’s proprioceptive information.

Research of reinforcement learning in small-size robots
like the rat robot is currently limited. A hierarchical
reinforcement learning framework based on SAC is proposed
in [9]. The two-level structure reduces the exploration space
in learning process, which is worthy of reference for the
rat robot. However, the implementation of reinforcement
learning on small-sized quadruped robots requires a higher
level of perception despite limited sensor information.
Full-sized robots like ANYmal [10] utilize machine learning
technology to build an altitude map of the surrounding
environment by mining data from tactile sensors. However,
small-sized robots face additional challenges due to
equipment limitations. Maurice et al. [11] implemented
linear policies to enable a small middle-sized quadruped
robot (with a height of 200mm) to navigate uneven terrain,
demonstrating the potential for further processing of IMU
data in the locomotion system of small-sized robots.

III. ARCHITECTURE OVERVIEW

Fig. 2 gives an overview of our proposed approach
for the rat robot. Our work mainly involves redesigning
decision-making actions for rat robots in order to simplify
the action space. In Part A, we build a state machine to
implement control in a motion cyclicality. Each leg is given
its phase added with different biases. Our boundary map in
the end-effector space outputs the Maximum motion radius
for each leg at phase θ. The radius of motion is then obtained
by multiplying with a normalized action signal. In Part B,
We map the control signal from polar to Cartesian coordinate
system on the basis of the preset motion center. Then the
geometric inverse kinematics designed for the flexible leg
maps it into servo control signals for each leg. Part C is
a policy-based reinforcement learning control loop. We use
a policy network to output action distribution to generate a
4-dimensional action signal at each step.

IV. METHODOLOGY

A. Motion generation based on a hierarchical mapping

In the end-effector coordinate space, we defined the
motion representation in polar coordinates (θ, ρ). Gait
patterns are encoded using the phase θ, and the target landing
position of the end-effector can be determined by specifying
the radial distance ρ. The top-level motion command of the
control system is defined as the ratio between the radial
distance of the target landing position of the end-effector
and the maximum range of motion.

Fig. 3 shows the structure of the rat robot, designed
with soft actuated components that differ from dog-size
quadrupedal robots. The support spine is constructed from
flexible 3D printing materials, providing elastic degrees of
freedom during motion. In this work, we do not enable active
control of the spine, but focus on the legged locomotion. The
bio-inspired legs of our robot are designed to closely mimic
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Fig. 3. Structure of the bio-inspired rat robot. The end-effector space is
located in the Y-Z plane of its own Cartesian coordinate system.

the body structure and movement pattern of natural mice,
while the flexible structures pose challenges to traditional
quadrupedal motion control methods, particularly when
reinforcement learning is implemented. Each leg of the rat
robot is driven by tendon ropes with dual servos on the hip.
Each servo has a rotation range of 180 degrees. As a result,
the direct control signal in a single time step is denoted as

q ∈ R8
clip,R8

clip := [−π

2
,
π

2
] (1)

which consists of 8 motor signals, each two working together
for a leg, and the rat robot gait can be specified by a sequence
Φ = {q}.

Most reinforcement learning methods take q as an action.
However, in the context of rat robots, such an action space
setup results in discontinuous actions in the end-effector
space. This is because numerically similar motor values
often correspond to very different locations when mapped
to the end-effector space, posing a significant challenge for
learning intelligent behaviors. In our work, motion planning
is performed in the end-effector space and incorporates gait
phase information through coordinate transformation.

As Fig. 4 shows, initially, in the end-effector workspace,
we define a maximum reachable motion space Sr based on
the original motion trajectory in our previous work [12], [13],
which balanced the step length and foot clearance.

To integrate gait information into the motion signals,
the end-effector space is converted from the Cartesian
coordinates (y, z) to the polar coordinates (ρ, θ), with the
center of motion (Cy, Cz) as the pole. The maximum range
of motion B(θ) for any phase θ can be obtained by

B(θ)← ∂Sr. (2)

At any phase θ, the location of the end point drop can be
determined by specifying the polar radius ρ. Now we can
define the motion signal of four legs as the ratio between
the polar radius of the end point’s landing position and the
maximum range of motion with format

at ∈ R4
clip,R4

clip := [0, 1] (3)

where the four components represent four legs for the robot.
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Fig. 4. Motion Signal of Four Legs in Scene Board. ∆θ is related to
factors including control frequency, response time, and physical constraints.

By adjusting the motion signal at ∈ [0, 1], the
corresponding motion position at phase θ can be controlled
by

ρ (θ) = atB (θ) , (ρ, θ) ∈ Sr (4)

Here, phase state θ is associated with time. In a complete
motion cycle T , the phase state of leg motion is

θi (t) = 2π ∗ (t/T + ϕi) , t ∈ [0, T ) (5)

where i from 1 to 4 represent the left front leg, right front
leg, left hind leg, and right hind leg, respectively, and ϕi

is the phase bias of each leg. In the Trotting gait, which
is applicable to low and medium speed movements, they
areϕ1 = 0, ϕ2 = 0.5, ϕ3 = 0, ϕ4 = 0.5.

at can be obtained from the motion generation network:

at ← A (O, θP ) (6)

where A (O, θP ) is the motion generation network and O
is the observation of the environment, which can be a
high-dimensional vector. By controlling the size of at, we can
generate different motion trajectories within the reachable
region. When at = 1.0,∀θ ∈ [0, 2π), the motion trajectory
degenerates into a pre-defined smooth closed curve.

Back to the Cartesian coordinate system(y, z) in
end-effector space, each motion track point can be obtained
by coordinate transformation:

y = Cy + ρ (θ) cos θ,

z = Cz + ρ (θ) sin θ.
(7)

where Cy and Cz are the centor of motion. In equation 7,
(y, z) represents a point on the trajectory of a single limb.

Subsequently, the coordinates of the end-effector space
point are mapped back to the rotation signals of the
two motors at the upper and lower hip joints through
mathematical inverse kinematic calculations:[

q1
q2

]
= Minv

[
y
z

]
. (8)

Here, q1 and q2 represent the rotation signals of the two
motors, while Minv is the inverse kinematics matrix obtained
through a mathematical bijection. This mathematical model
allows for design motions in the end-effector space of the



robot quadruped, which has a direct physical meaning for
the motion of the robot.

After the aforementioned steps, the motion of the
rat robot can be determined by a compact 4D vector.
Information of the motion range and gait phase improves
the training efficiency, while the action signals defined
through hierarchical analytical mapping provide freedom for
exploration.

B. RL loop with timeslice normalization

In order to extract effective interaction information for
learning between the robot and the environment, we span
the action of servo signals to multiple timesteps within
a timeslice. During the training, an RL step comprises
a segment of end-effector trajectory that spans multiple
timesteps. In any arbitrary gait, a complete motion cycle of
length T can be divided into multiple trajectory segments,
and the number of timesteps in each segment Nstep is
calculated by

Nstep = (fT0Ndiv)
−1 (9)

where f denotes the frequency of periodic motion, T0 stands
for the minimum control interval (set to 0.002s in our
simulation with MuJoCo), and Ndiv refers to the number
of period divisions. For instance, with Ndiv = 8, a single
time slice comprises 1/8 of the motion trajectory of T .

After conduction of a time slice, the observation
information state st can be extracted from the environment

st =
(
at, iC , r, ⃗Vvel, ⃗Vgyro

)
(10)

where iC is the index of the phase segment of the time slice
in the entire motion cycle T , r is the reward value, ⃗Vvel ∈ R3

is the filtered velocity, and ⃗Vgyro ∈ R3 is the filtered angular
velocity. Besides, reward of the interaction within the time
slice is obtained as

r = Kvel
⃗Vgyro · ⃗udir (11)

where Kvelis the weighting factor and ⃗udir is a unit vector
for direction. Our work of reward shaping did not focus on
specific body structure or character of environments. Above
design of the reward applies for other tasks of quadruped
robots as well while remaining room for improvement in
specific scenarios.

We parameterize the Control policy as a Gaussian
distribution with a diagonal covariance matrix by

πθ (a | st) = N (a | µθ (st) , σθ) . (12)

A deep neural network (DNN) structure is employed to
generate the mean µθ (st) of the distribution, with inputs
st. Additionally, the standard deviation σθ is generated by
a separate and independent network layer, which facilitates
exploration during training. Updating of the policy can be
through the common-used policy-based RL algorithms. The
complete algorithm is outlined in Algorithm 1.

Algorithm 1 RL algorithm with the rat robot
Require:S0,State with initial environment

β, experience replay buffer
N , the number of steps during a time slice
ϵ ∼ N (0, 1), gaussian noise for exploration

1: Initiate the policy
2: while Not Converged do
3: Get action signal at ← πθ(st) + ϵ
4: Get motion radius ρ(θ) = at ×B(θ)
5: Get end-effector space tracking point (y, z)← ρt(θ)
6: Transfer to motor signal (q1, q2)← (y, z)
7: for i = 1 to N do ▷ Time slice conduction
8: Conduct servo control Signal (q1, q2)
9: end for

10: Get observation st+1 and reward r
11: Append the transition (st, at, r, st+1) into β
12: if β is full then
13: Update policy πθ

14: Reset β
15: end if
16: end while

V. EXPERIMENTS

A. Experimental setup

In order to validate the proposed approach, we construct
four different terrain scenarios for the robot to train adaptive
motions, as Fig. 5 shows. The terrain sizes are designed
to simulate real-world environments that are encountered
by small robots. After simulation, physics validation of the
learning result in the real world is carried out as well.

Fig. 5. Four test scenarios for the rat robot. (S1)Planks: Gallop over planks
with wide gap(width=10 cm).(S2)Uphill: a 10-degree slope. (S3)Logs: Upon
a pile of logs. (S4)Stairs: Micro stairs between two platforms.

The rat robot we use has the size of 40 cm × 25 cm and
features 8 DOF for control. Each leg of the robot has a step
length of 4 cm and a foot clearance of 1.5 cm. On the basis
of the physical platform we have utilized before, we build
a digital twin in the MuJoCo platform [14] for simulation.
The simulations run on a Ubuntu 18.04 system, with a server
equipped with dual Intel Xeon Gold 6234 Processors and
eight V100 GPUs. Each training session requires less than
2GB of memory. The base process of reinforcement learning
is implemented with the Stable-baselines3 platform [15].

B. Motion analysis

The rat robot successfully completed all four tasks with
motion generated by the trained polices. We take Scenario
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Fig. 6. Montage in ”Planks”. The first line shows the movement of the rat robot controlled with our reinforced gait. The second line shows the movement
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Fig. 7. Training curves on 4 simulation tasks. Each experiment is was run four times. The solid lines represent the average score and the shaded areas
represent a standard deviation.
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Fig. 8. End point trajectory of the rat robot’s leg in (S1)Planks.

Planks as an example for analysis and Fig. 6 presents a
montage of the rat robot walking forward in it. The first row
displays the motion generated by our approach, while the
second row shows the basic trotting gait. At the beginning,
two methods exhibit similar performance. The fixed trot gait
causes the robot to get trapped at the second plank at 6s,
failing to overcome the obstacle. That is primarily because
the hind legs are unable to surmount the obstacle. In contrast,
our approach enables the robot to modify its motion signal
and attempt passage. The rat robot touches the middle plank
at 3 s and it takes less than 6 s to pass. Experiments in other
scenarios perform consistent results.

The end point trajectory of the rat robot is depicted in
Fig. 8. The robot successfully overcame the obstacle after
adaptive adjustment of our method, but got stuck at the
second plank with basic trotting gait. It can be observed
that the agent encounters a period of obstruction at the
second plank. Following motion adjustments, it generates

an adaptive gait thus surmounting the obstacle. In contrast,
the robot with a basic trotting gait is unable to overcome
the diverse terrain with a fixed motion pattern due to the
absence of environmental state feedback. Therefore, there
exist overlapping trajectories at the second plank and the
robot fails to move on.

C. Training performance

Training curves shown in Fig. 7 illustrate that the
episode rewards of our method get converged in all tested
scenarios and performance of converged reward is shown
in Table I. In order to evaluate the effectiveness of our
proposed method, we compare it with three policy-based
benchmarks. The proposed method significantly outperforms
the benchmark algorithms with higher converged rewards
and higher convergence speed. Meanwhile, most benchmark
algorithms fail to converge within 2M steps.

TABLE I
PERFORMANCE IN FIVE SCENARIOS.

Scenario name Ours PPO SAC A2C
Plane 121.3 11.4 6.0 3.7

(S1)Planks 66.6 11.2 19.4 3.8
(S2)Uphill 115.5 11.5 13.2 2.7
(S3)Logs 85.4 11.2 10.8 2.9
(S4)Stairs 88.0 10.6 10.1 2.3

Note that, aforementioned similar work of quadrupedal
locomotion can not be directly compared because of
different body construction. For discussion, some methods
like the ETG-RL [7] endow robots with remarkable
terrain adaptability, while often necessitating timestep-level
iterations in the order of tens of millions for convergence in
deployment, or extensive pre-training efforts. In contrast, our



(e)t=20s(d)t=15s(c)t=10s(b)t=5s(a)t=0s

Fig. 9. Montage of the robot running in the real world. The obstacle is a 5mm height plank.

approach can effectively obtain gait patterns within hundreds
of thousands of step iterations by initiating from scratch.

The experimental results demonstrate that the neural
network strategy is capable of learning effective motion
through reinforcement learning (RL), facilitated by our
model-based motion generation, specifically tailored for
small robots. Our training has not yield optimal results due to
the absence of complex reward shaping and network design.
However, the concept of motion generation is not limited to
specific tasks and can be equally applicable to other small
robots as well.

D. Physics validation

Based on the policy learning in simulation as afore-
mentioned, we generate motion signals sequences with the
trained policies. In the provided video, we record the
performance of the rat robot in uneven terrain and Fig. 9
gives a montage of the robot running at a Plank obstacle. As
Table II shows, we test the performance of the robot with
the trained motion and the basic trotting gait at different
obstacle heights. As height increases, the passage rate of the
unadjusted trotting gait decreases dramatically, while that of
our trained motion remains high. This is a physical validation
of the proposed method which prove that the generated
motion is feasible in the real robot. We expect to take further
research in conducting online learning where the training
loop could also be on the real robot.

TABLE II
PASSAGE RATES AT DIFFERENT OBSTACLE HEIGHTS

Height(mm) 1 2 3 4 5
Ours trained motion* 100% 100% 70% 70% 60%
Basic trotting gait* 100% 60% 10% 0% 0%

* Each experiment is repeated 10 times.

VI. CONCLUSIONS

This paper presents a hierarchical approach for
autonomously generating robot motion for complex
terrains. Our proposed approach combines the motion
generation of our rat robot with model-based methods
and a hierarchical mapping to improve learning efficiency.
Through timeslice execution of actions in the RL loop,
efficient interaction with the environment is guaranteed to
facilitate action learning. We conducted a series of case
studies, and the results demonstrate the effectiveness and
training efficiency of our method. The proposed approach
was successful in all challenging scenarios tested, and it
can be applied to other robotic applications as well.

REFERENCES

[1] P. Lucas, S. Oota, J. Conradt, and A. Knoll, “Development of the
neurorobotic mouse,” in 2019 IEEE International Conference on
Cyborg and Bionic Systems (CBS). IEEE, 2019, pp. 299–304.

[2] S. M. Neuman, B. Plancher, B. P. Duisterhof, S. Krishnan, C. Banbury,
M. Mazumder, S. Prakash, J. Jabbour, A. Faust, G. C. de Croon,
and V. J. Reddi, “Tiny robot learning: Challenges and directions
for machine learning in resource-constrained robots,” in 2022 IEEE
4th International Conference on Artificial Intelligence Circuits and
Systems (AICAS), 2022, pp. 296–299.

[3] D. Rus and M. T. Tolley, “Design, fabrication and control of soft
robots,” Nature, vol. 521, no. 7553, pp. 467–475, May 2015. [Online].
Available: https://doi.org/10.1038/nature14543

[4] Y. Ji, Z. Li, Y. Sun, X. B. Peng, S. Levine, G. Berseth, and K. Sreenath,
“Hierarchical reinforcement learning for precise soccer shooting
skills using a quadrupedal robot,” in 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2022, pp.
1479–1486.

[5] T. Degris, P. M. Pilarski, and R. S. Sutton, “Model-free reinforcement
learning with continuous action in practice,” in 2012 American Control
Conference (ACC), 2012, pp. 2177–2182.

[6] X. Li, W. Shang, and S. Cong, “Model-based reinforcement learning
for robot control,” in 2020 5th International Conference on Advanced
Robotics and Mechatronics (ICARM), 2020, pp. 300–305.

[7] H. Shi, B. Zhou, H. Zeng, F. Wang, Y. Dong, J. Li, K. Wang, H. Tian,
and M. Q.-H. Meng, “Reinforcement Learning With Evolutionary
Trajectory Generator: A General Approach for Quadrupedal
Locomotion,” IEEE Robotics and Automation Letters, vol. 7, no. 2,
pp. 3085–3092, Apr. 2022, conference Name: IEEE Robotics and
Automation Letters.

[8] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
Robotics, vol. 5, no. 47, p. eabc5986, Oct. 2020, publisher: American
Association for the Advancement of Science.

[9] Y. Wang, W. Jia, and Y. Sun, “A hierarchical reinforcement learning
framework based on soft actor-critic for quadruped gait generation,”
in 2022 IEEE International Conference on Robotics and Biomimetics
(ROBIO), 2022, pp. 1970–1975.

[10] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso,
V. Tsounis, J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch,
R. Diethelm, S. Bachmann, A. Melzer, and M. Hoepflinger, “Anymal
- a highly mobile and dynamic quadrupedal robot,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2016, pp. 38–44.

[11] M. Rahme, I. Abraham, M. L. Elwin, and T. D. Murphey, “Linear
policies are sufficient to enable low-cost quadrupedal robots to
traverse rough terrain,” in 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2021, pp. 8469–8476.

[12] Y. Huang, Z. Bing, F. Walter, A. Rohregger, Z. Zhang, K. Huang,
F. O. Morin, and A. Knoll, “Enhanced quadruped locomotion of a rat
robot based on the lateral flexion of a soft actuated spine,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2022, pp. 2622–2627.

[13] Y. Huang, Z. Bing, Z. Zhang, K. Huang, F. O. Morin, and A. Knoll,
“Smooth stride length change of rat robot with a compliant actuated
spine based on cpg controller,” in 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2023.

[14] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2012, pp. 5026–5033.

[15] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning
implementations,” J. Mach. Learn. Res., vol. 22, no. 1, jan 2021.


