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Abstract— The rat robot is a soft compact quadrupedal
robot with the same size as real rats. It is difficult for such
robots to learn effective motions on complex terrain owing to
their underactuated nature and limited sensors. This paper
proposes a novel approach for the rat robot to learn adaptive
motion on rugged terrain based on reinforcement learning. The
training architecture is designed for the rat robot’s nonlinear
control structure. In order to improve perceptual efficiency, we
gather and compress perception information based on sensor
data observations in time clusters during robot walking. Our
proposed method demonstrates excellent exploration of complex
effector space and nonlinear dynamics of the rat robot to adapt
to challenging terrain. We evaluate the efficacy of our approach
on a varied set of scenarios, which include various obstacles and
terrain undulations and physical validation is performed. Our
results show that our approach effectively achieves efficient
motions on complex terrains designed for small-sized robots
and outperforms other benchmark algorithms.

I. INTRODUCTION

Rat robot is a kind of bionic quadrupedal robot with the
same size as real rats, which has a compact structure together
with flexible rope-driven tendons. Locomotion of this kind
of compact bionic robot is worthy investigating, for not
only better understanding the nature but also special robot
applications. Legged robots show greater competitiveness
than their wheeled counterparts in unstructured complex
environments [1]. Compared with larger quadruped robots,
small-sized robots [2] exhibit increased flexibility, making
them well-suited for navigating constricted spaces due to
their smaller size, lower weight, and reduced cost. Fig. 1
shows the rat robot developed on the basis of our previous
work [3], [4].

Motion abilities of the rat robot require drugging with
state-of-art methods. Fig. 2 shows the end-effector space of
legs based on our previous kinematics calculation [5], [6] ,
which needs huge efforts for conventional methods to fully
explore. Meanwhile, deep reinforcement learning (DRL) has
gained attention in legged locomotion recently. Conventional
methods acquire manual effort to model both the robotics
system and the target task scenario, often depending on the
experience of designers. In contrast, reinforcement learning
is a viable approach for generating robot motions for
complex terrain by analyzing the robot status during walking
[7]. However, DRL for small-sized quadrupedal robots like
rat robots has not been widely studied.
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Fig. 1. Rat robot, a small-sized quadruped robot with soft rope-driven legs.

(a) Front Leg (b) Hind Leg

Fig. 2. Reachable range of legs in the end-effector space. The Cartesian
Y-Z plane undertakes the motion space of the rope-tendon driven leg.

Locomotion based on reinforcement learning is
challenging because of nonlinear robotic dynamics and
weak feedback from limited sensors. On one hand, the
soft structure and rope-driven tendons theoretically poss
an infinite number of digrees of freedom(DOF) [8]. It
contributes to complex time-serious relationship between
control signals and environmental feedback. On the other
hand, due to limitations in size, weight, area, and power
(SWAP), conventional sensors are frequently unfeasible for
small-sized robots [9], which is critical for common-sized
robotics locomotion. Light-weight sensors acquire for
additional processing to attain comparable levels of
perception to higher-quality counterparts [10]. Therefore,
actions and observations among timesteps are supposed to
be considered together. And further process of time-serious
sensor data is significant to motion learning.

In this paper, we propose a new method to conduct
autonomous locomotion of the rat robot to overcome
complex terrain based on reinforcement learning. This
approach is aimed at overcoming the limit of light-weight
sensors and structure challenge on the rat robot to better
explore motion potential of small-sized soft robots. The
normalized action is generated with a policy network to
cover certain timesteps in order to obtain stronger physical
interaction. Based on the observations from light-weight
sensors of the robot, we design a time cluster to filter
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Fig. 3. Architecture: Part A implements a reinforcement learning method to generate action signals. Part B is the execution of motor signals within a
high frequency time-serious piece. Part C processes the sensor data observations and generates the reward and the state of a markov node.

noise of time-series observations during interaction with the
environment. The state is generated based on the processed
observations. Besides, we design the reward function with
three factors designed for adapting to the robot motion
scenarios. Experiments are conducted on four challenging
scenarios and the results prove the validation of our method.
Main contributions of this work are summarized as follows:

• We design the action of the rat robot generated by a
policy network covering several timesteps. Complex end
effector space and nonlinear dynamics are explored with
reinforcement learning to adapt to challenging terrain.

• We propose a time cluster updating method to process
sensor data observations among high-frequency actions.
Effective states are generated to reinforce perceptual
feedback, contributing to improved training efficiency.

II. RELATED WORK

DRL utilizes the feature representation ability of deep
learning to strengthen the decision-making ability of
agents, contributing to outstanding end-to-end control
performance [11]. Despite achievements that reinforcement
learning has made, there are still gaps between robotic
control tasks and benchmark problems in reinforcement
learning [12]. Recent new methods tend to combine
model-free and model-based approaches [13], leveraging
predetermined models of system dynamics to guide
model-free learning. Lee et al. [7] presented a proprioceptive
feedback method that improved model robustness. Haojie et
al. [14] made use of preset motion as reference for policy
learning. An optimization model based on the designed
evolutionary trajectory generator was proposed to adjust

the shape of final motion trajectory. Sanket et al. [15]
developed a probabilistic MPC method that considers model
uncertainty in long-term predictions, leading to improved
accuracy. These methods offer a promising direction for
model-free methods by incorporating additional information.

However, most approaches are designed for full-sized
robots such as the MIT Cheetah [16] and ANYmal [17].
One our previous work [18] proposed a hierarchical
model-based method to train adaptive locomotion of a
rat robot. Small-sized robots, facing constraints such as
limited sensor information, low-powered micro-controllers,
and computing resources [2], pose unique challenges to DRL.
Many current approaches rely on expensive graphics cards
and high-perception tactile sensors to build an altitude map
of the environment, which may not be applicable or effective
for small-sized robots.

III. ARCHITECTURE OVERVIEW

Fig. 3 shows the architecture of the proposed method.
First of all, we analyze the structure of the rat robot and
give the definition of action in locomotion, which is a
8-Dimension vector in the part A Control Signal Generation.
In our architecture the actions are sampled from a policy
distribution, generated by a policy network. With the rat
robot’s equipment limits taken into account, the sensor data
observation within a timestep is available. Secondly, on the
basis of control signal execution with several timesteps in the
part B High Frequency Timestep Execution, a time cluster is
designed to filter noise and conduct post-process to improve
perceptual efficiency. A integrated state is then established
as the part C shows. Besides, we design the reward function
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Fig. 4. Structure of the bionic leg, consisting of an elastic limb, a driving
tendon and two actuating motors. End point of the limb moves in the
2-Dimension end-effector space, driven by two actuators. For the flexible leg
driven by dual motors, the Cartesian Y-Z plane undertakes the end-effector
motion space. Schematic diagram of the leg movements is from [4].

in Section IV-C. With markov nodes generated including
actions, states and rewards, learning iterations are performed
to update the policy and then train the robot to overcome
rugged terrain.

IV. METHODOLOGY

A. Action and Observation Space of the Rat Robot Platform

The rat robot based on our previous work is a type of
small-sized bio-inspired robot, designed with soft actuated
components that differ from dog-size quadrupedal robots.
The bio-inspired legs of our robot are designed to closely
mimic the body structure and movement pattern of natural
mice, while the flexible structures pose challenges to
traditional quadrupedal motion control methods, particularly
when reinforcement learning is implemented. As Fig. 4
shows, each leg of the rat robot is driven by rope-tendon
driven servos on upper side with the range of 180 degrees for
each, activated by PWM signals. The direct control signal for
one timestep can be denoted as q ∈ R8

clip,R8
clip := [−π

2 ,
π
2 ].

We design the action as a set of normalized servo angles
conducted in several timesteps, which id defined as

at = {
2

π
q}Nstep×8 (1)

where Nstep is the number of timesteps that one single action
is conducted in. Besides, we get the normalized range at ∈
R8

clip,R8
clip := [−1, 1].

As part A of Fig. 3 shows, we implement a policy network
to generate actions. The Control policy is parameterized as
a Gaussian distribution N (µ, σ) with a diagonal covariance
matrix:

πθ (a | st) = N (a | µθ (st) , σθ) . (2)

where θ is the parameter of the policy and st is the state in
the markov node, which is illustrated in Section IV-B. A deep
neural network (DNN) structure is employed to generate the
mean µθ (st) of the distribution. Additionally, the standard
deviation σθ is generated by a separate and independent
network layer, which facilitates exploration during training.
The complete algorithm is outlined in Algorithm 1.

Observation of the rat robot is determined by the
sensors. In addition to structural peculiarities, limited sensor
equipment affects perception. The main sensor of the rat

Algorithm 1 Model-free Motion Learning with Rat Robot
Require:S0,State with initial environment

β, experience replay buffer
Nstep, the number of time steps a time cluster contains
ϵ ∼ N (0, 1), Gaussian noise for exploration

1: Initiate the policy
2: while Not Converged do
3: Get normalized action signal at ← πθ(s) + ϵ
4: for i = 1 to Nstep do ▷ Generate one time cluster
5: Conduct motor control (q1, q2) for each leg
6: Get sensor data of one single timestep
7: Append sensor data into Timing Pool
8: end for
9: Generate State s of current time cluster

10: Append the transition (st, at, r, st+1) into β
11: if β is full then
12: Update Policy
13: Reset β
14: end if
15: end while

robot is an IMU at its body center, which provides 3-axis
acceleration and 3-axis angular velocity oIMU = {a, g}.
With calculation of the integrated library, the three-axis
velocity and quaternion can be obtained o′IMU = {v,Q}.

Taking into account our development progress on the
physical robot, we assume that 4 foot pressure sensors are
available. In reality, the accuracy of pressure readings from
foot sensors is low and unstable due to the limitations
of physical device performance. Without considering the
dynamical characteristics, we focus on the state of whether
each leg is in contact with the ground or not. Therefore, the
pressure sensor reading is converted to a Boolean value as
cF,k = {0, 1}, where k = 1, 2, 3, 4 refers to four legs. To
summarize, the observation space of the rat robot can be
defined as

ot = {v,Q, cF,k} (3)

B. State Generation with Time Cluster Updating

On the basis of the observation space, we design a
post-process of sensor data observations among timesteps,
which is aimed at reducing the dimensionality of complex
environment observations. A data pool of length Nstep is
set to store sensor data observations among Nstep timesteps,
referred to as a ”time cluster”. As part B of Fig. 3 shows,
an RL step comprises a segment of servo signal conduction
within Nstep timesteps. Part C describes the process of state
generation, as detailed by Fig. 5.

During the execution of actions within a time cluster,
sensor data is collected for further process to obtain valid
sensory information with filtered noise. We use the mean
filter to process the sensor information. The processing of
the three-axis velocity information is as follows:

Vi =

Nstep∑
k=0

vik
Nstep

(4)



Fig. 5. Process of State Node Generation within a Time Cluster

where i from 1 to 3 corresponds to three directions, and vik
is the kth sensor data of velocity within a time cluster. In a
continuous run, the computation at the end of a time cluster
needs to be reduced in order to balance the computation time
within each timestep for real-world execution. We modify
Equation 4 into an incremental form in order to update the
amount of state information in real time:

Vi
k =

k − 1

k
Vi

k−1 +
1

k
vik. (5)

The processing of the angular velocity follows the same
approach. Note that the selection of filter types is not the
focus of our research, where other filters can be used as
well. As for the foot pressure sensor, cF,k = 0 only when
sensor readings are all 0 in a time cluster.

After generation of a Timing Cluster, the processed
perceptual information together with the information of its
own action in the current RL step form the State s in the
Markov node

st =
(
at, r, ⃗Vvel, ⃗Vgyro, V⃗Q, cF

)
(6)

where r is the reward value, ⃗Vvel ∈ R3 is the filtered velocity,
⃗Vgyro ∈ R3 is the filtered angular velocity, and V⃗Q ∈ R4 is

the filtered quaternion. Acceleration is not included because
experimental experiences show that the calculated velocity
performs better.

C. Reward Function

In order to traverse challenging terrain among several
scenarios and avoid getting trapped, the reward function is
designed as follows:

r = rforward + rtrap + renergy (7)

which consists of three items considering different factors.
rforward is the main part of the reward function aimed to
drive the robot to move ahead, which is defined as

rforward =

{
Wvel

⃗Vvel · ⃗udir
⃗Vvel · ⃗udir < Tvel

−Wvel else
(8)

where Wvel is the weighting factor, ⃗udir is a unit vector
for direction. Tvel is the threshold of velocity because a
overlarge velocity correspond to the robots falling down in an
unstable situation. Second factor rtrap punishes overturning
and causes terminating one episode, which is defined as

rtrap =

{
0 nair < 10 (about0.5s)

−Ktrap else
(9)

where nair is the number of sustained states when all four
feet are off the ground at the same time. nair is calculated
as follows:

nair =

{
0 Σ4

k=1cF,k > 0

nair + 1 else
(10)

The last factor renergy is

renergy = WeΣ
8
i=1|ai,t − ai,t−1| (11)

where We is the weighting factor. It is designed to improve
coherence between movements and reduce drift.

V. EXPERIMENTS

This section provides a detailed description of the
experimental setup employed to assess the performance of
the proposed method. The motion of the rat robot is analyzed
to demonstrate the effectiveness of our proposed method.
Subsequently, we elaborate on the efficiency of the algorithm.

A. Experimental Setup

Four terrain scenarios are constructed for the purpose of
training the rat robot to navigate, as illustrated in Fig. 6.
The size of the terrain scenarios is designed to simulate the
real-world environment encountered by small robots. Table
I shows the hyper parameters in the experiment.

The rat robot is a small quadrupedal robot that has
dimensions of 40 cm × 25 cm and features 8 degrees of
freedom for control. Explorable end effector space of each
leg is shown in Fig. 2. Using the physical platform utilized
in our prior research, as depicted in Fig. 1, a digital twin is
created.

The simulations are carried out using the MuJoCo robot
simulation platform [19], operating on a Ubuntu 20.04
system. The training machine is a server equipped with dual
Intel Xeon Gold 6234 Processors. Each training session is
allocated one physical core.

Fig. 6. Four different testing scenarios: (S1)Planks: gallop over planks
with gaps of 10 cm width. (S2)Uphill: a slope 10-degree. (S3)Logs: a pile
of logs. (S4)Stairs: small stairs between platforms of different heights.

TABLE I
HYPER-PARAMETERS

Parameter Symbol Value
Length of a time cluster Nstep 5

Batch Size NB 2048
Maximum timestep of one episode Ets 2000

Weight of rforward Wvel 5.0
Weight of rtrap Ktrap 5.0

Weight of renergy We 0.1



Fig. 7. Training curves on 5 simulation tasks.

TABLE II
PERFORMANCE IN FIVE SCENARIOS∗

Scenario name Success rate (%) Episode reward
Plane – 332.9

(S1)Planks 72 210.3
(S2)Uphill 80 98.6
(S3)Logs 78 102.1
(S4)Stairs 86 99.4

* Experiment of each scenario is repeated for 50 times.

B. Performance in Different Scenarios

The rat robot successfully completed all four tasks with
policies learned from scratch. Fig. 7 shows the training
curves in the four scenarios together with the basic plane
scenario. All five policy agents converge successfully with
different episode rewards. That results from blockage of
rugged terrain in different scenarios. The landscape in the
basic plane scenario is simple and relatively easy to pass
through, resulting in a larger converged episode reward. The
scenario of stairs seem to be most difficult so the episode
reward is lower than others. It consists of both rugged terrain
on the horizontal plane and height difference of slope, which
is in some way a combination of (S1) and (S2). Validation
experiments are performed by using trained policies to drive
the robot and render the screen for observation. Results are
consistent with the training curves.

Table II shows the performance metrics of different
scenarios. We made 50 attempts in each scenario with
respective trained policies. Performance of (S1), (S3) and
(S4) is consistent with their training curves. It is interesting
that although the converged episode reward of (S2) is not
the smallest of five scenarios, success rate of (S2) performs
relatively small. Such phenomenon indicates that height
variation is more challenging for the rat robot’s movement,
needing to be further studied.

C. Comparison With benchmarks

In order to validate the proposed method of this work,
three classical benchmark algorithms are presented here for
comparison. The proposed architecture is based on the policy
optimization reinforcement learning. Considering that, we
pick there model-free reinforcement learning algorithms to
be compared with our method: A2C, PPO and SAC. To
make fair comparisons, the benchmark algorithms use the
same action and reward design as our method, but the core

Fig. 8. Training curves of different methods on the plane.

technique of the time cluster design is not implemented.
As a result, the uncompressed timesteps make the episode
steps of benchmark algorithms Nstep times the length of our
method. In comparison, episode rewards of them are divided
by Nstep inversely. The implementation of these benchmark
algorithms is based on the Stable-baselines3 Platform [20].

As shown in Fig. 8, the proposed method significantly
outperforms the benchmark approaches just on the plane. All
the policy has to learn the parameters from scratch. Although
benchmark algorithms are also able to converge, the over low
converged episode rewards on the plane suggest that they
are unable to generate forward motion to drive the robot.
That is because they all fall into the local optimum, failing
to fully explore the action space. Scenario rendering shows
that three benchmark algorithms just make the robot struggle
in place. In four challenging scenarios the conclusions are
consistent. That is because general reinforcement learning
methods cannot learn from the weak sensor feedback within
a simple short timestep. In conclusion, the compression of
states is necessary for improving training efficiency.

D. Validation in the real world

To validate the effectiveness of our approach, we
implement experiments on the real physical robot. In a
scenario where 5 mm stairs are set ahead to get through, tests
on the rat robot are performed with both our approach and
regular control method of trotting gait. Our approach helps
the robot succeed in running across the the terrain while the
basic trotting gait fails. Fig. 9 shows the montage of our
robot running across the staircase. For Further discussion,
we compare the performance of our method with that of a
basic trotting gait and our previous work of a hierarchical
DRL control method [18]. As Fig. 10 shows, the proposed
approach performs the fastest speed. Due to a more direct
control policy compared with our previous hierarchical DRL
control method, the execution time for motion calculation
has been reduced while maintaining the ability to get through
unstructured terrain.

VI. CONCLUSIONS

This paper proposes a reinforcement learning method to
generate motion of the rat robot for unstructured terrain. We
design a reinforcement learning architecture to explore the
nonlinear kinematics and dynamics of the small, flexible rat
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Fig. 9. Montage of the physical robot running across a 5 mm high staircase.

(a) Velocity (b) Motion calculation time

Fig. 10. Performance comparison in a plane in the real world. The trotting
gait is set to the maximum frequency for normal forward motion. Method
Hierarchical refers to our previous work [18].

robot. A time cluster is designed to execute post-processing
of time-series data during the robot’s interaction with
the environment. The effective state is generated based
on the compressed observations and self-action status,
improving the training efficiency. A multi-factor reward
function is formulated to adapt to complex terrain. We design
experiments with four rugged terrain scenarios to validate
the performance of the proposed method and it is compared
with benchmark algorithms to prove effectiveness of the time
cluster. Experiments show that the proposed method makes
success in all challenging scenarios and outperforms other
benchmark algorithms.
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