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Abstract—Learning musical structures and composition pat-
terns is necessary for both music generation and understanding,
but current methods do not make uniform use of learned features
to generate and comprehend music simultaneously. In this paper,
we propose PianoBART, a pre-trained model that uses BART
for both symbolic piano music generation and understanding.
We devise a multi-level object selection strategy for different
pre-training tasks of PianoBART, which can prevent informa-
tion leakage or loss and enhance learning ability. The musical
semantics captured in pre-training are fine-tuned for music
generation and understanding tasks. Experiments demonstrate
that PianoBART efficiently learns musical patterns and achieves
outstanding performance in generating high-quality coherent
pieces and comprehending music. Our code and supplementary
material are available at https://github.com/RS2002/PianoBart.

Index Terms—Automatic Music Generation, Music Under-
standing, Symbolic Piano Music, Bidirectional and Auto-
Regressive Transformers (BART)

I. INTRODUCTION

Music generation and understanding are interrelated topics
in the music community. Understanding the melody, rhythm,
and structure [1], [2] greatly benefits effective music genera-
tion. Music generation [3], [4] is also helpful in investigating
how well machines understand musical structure and com-
position patterns. Hence there is great and urgent interest in
exploring automatic music generation and understanding.

Given the sequential similarity between text and symbolic
music, language-based methods have been applied to sym-
bolic music generation and understanding [1]–[6]. However,
directly using language-based methods is challenging due to
the inherent differences between text and music. First, music
has a more complex semantic and hierarchical structure than
natural language, which means that symbolic music requires
much longer sequences to represent. Second, symbolic music
involves various musical elements like melody, rhythm, and
harmony. Nevertheless, the lack of sufficient specialized la-
beled data hinders representation learning.

Although recent works on music generation have proposed
some encoding methods to represent symbolic music [5], [7],
these encodings produce very long sequences up to thousands
or more tokens for a full song of several minutes. To address
this, we adopt the compact Octuple encoding [1]. It can
efficiently and comprehensively represent music and greatly
reduce the sequence length, thus supporting long-term music
generation and full-song-level understanding.

∗The corresponding author is Chengying Gao.

In many fields including Music Information Retrieval
(MIR), there is often insufficient data due to factors like
high cost, copyright problems, and high requirement of expert
knowledge. To make the best use of available data, pre-training
on unlabeled data has become the most promising method
[8]–[10], as it enables models to learn common features of
data structure. In MIR, there have been several works [1], [2],
[6] using the pre-training method of BERT [11] from NLP.
However, the problem of information leakage or loss is caused
by these models selecting too few or too many objects for pre-
training transformations, which degrades the ability to capture
underlying musical patterns. To prevent information leakage
or loss, based on the octuple encoding and pre-training tasks,
we propose a multi-level object selection strategy including
a designed n-bar level method. The method can dynamically
determine the selection range of pre-training objects and is
applicable to different pre-training transformations.

Both music generation and music understanding are based
on learning musical structure and semantics, while existing
methods address these tasks separately, preventing the reuse
of learned features in one task for the other. To this end, we
propose PianoBART, a novel BART-based pre-trained model
that addresses both symbolic piano music generation and
understanding in a unified framework. Unlike BERT-based
pre-trained models [1], [2], [6], PianoBART uses an encoder-
decoder structure that allows it to be applied for sequence-
to-sequence task, thus handling both generation and compre-
hension. In addition, PianoBART includes more transforma-
tions than BERT to enhance pre-training effectively. More
importantly, for each transformation, we design corresponding
object selection methods to largely avoid information leakage
or loss. PianoBART is pre-trained in a self-supervised way
to overcome the lack of labeled data. Experiments show that
PianoBART successfully captures music domain knowledge
and excels in both music generation and comprehension.

In summary, the main contributions of this work are:
(1) We propose PianoBART, the first large-scale pre-trained

model that uses BART for both symbolic piano music gener-
ation and understanding.

(2) A novel multi-level object selection strategy for pre-
training is designed to avoid information leakage and loss
while improving the quality of downstream tasks.

(3) Experiments show that PianoBART achieves excellent
performance on realistic and coherent music generation and a
number of music understanding tasks.

https://github.com/RS2002/PianoBart
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Fig. 1. Overview of the proposed PianoBART framework (right) and the designed multi-level object selection strategy (left).

II. RELATED WORK

A. Symbolic Music Generation
Significant progress has been made in automatic symbolic

music generation [3]–[5]. Inspired by the similarity between
text and symbolic music, sequence models like attention-based
Transformer [12] have been increasingly applied to capture
the long-term dependency of music and produce coherent
music samples [5], [7]. However, existing symbolic music
encoding [5], [13] produces too lengthy sequences, making
the Transformer computationally difficult. In this paper, we
introduce Octuple representation [1] into music generation,
effectively reducing the sequence length. Besides, this paper
introduces the BART pre-training model [14] and proposes
PianoBART for symbolic piano music generation.

B. Symbolic Music Understanding
In the symbolic music domain, it’s difficult and time-

consuming to obtain professional labels, hence existing la-
beled datasets remain small size [15]–[17]. To overcome the
lack of labeled data, recent works use pre-trained language
models like BERT [11], [18] to learn the long-term musical
structure in an unsupervised way [1], [2], [6]. However, due
to the repetitive characteristics of music, simply using pre-
training methods in NLP (e.g., mask language model [11]) for
symbolic music may lead to information leakage or loss [1],
affecting the performance of downstream tasks. To address
this, we design a multi-level object selection strategy for pre-
training that is able to enhance the model’s robustness.

III. APPROACH

A. PianoBART Framework
The proposed PianoBART is a BART-based model for

piano music generation and understanding. As shown in
Fig. 1, PianoBART adopts the standard Transformer encoder
and decoder [12] architecture as the backbone. The encoder
bidirectionally encodes sequences of symbolic music tokens
through multi-head self-attention. The decoder autoregres-
sively generates outputs from left to right, which is suitable
for sequence generation tasks.

We employ the Octuple representation [1] to encode sym-
bolic music. An example is demonstrated in Fig. 1, where
the input MIDI is converted to a sequence of octuple tokens.
Each octuple token corresponds to a note and contains 8 mu-
sical elements, including time signature (TS), tempo (BPM),
bar, position, instrument, pitch, duration, and velocity. The
embeddings of the 8 elements in each token are concatenated
together and then linear projected to the embedding token,
which is fed to the BART. As for the hidden state produced
by the Transformer decoder, octuple elements in each token
can be predicted simultaneously with different linear layers.

PianoBART is pre-trained by (1) corrupting octuple token
sequences, and (2) learning a model to reconstruct the original
sequences [14]. More diverse transformations than BERT that
destroy the sequence structure are employed to enhance the
model’s ability to learn the musical pattern. We design a multi-
level object selection strategy based on the pre-training trans-
formations and the employed Octuple encoding. This strategy
can effectively prevent the information leakage and loss that
may occur during the pre-training. PianoBART is fine-tuned
on a variety of downstream tasks in music generation and
understanding, which will be described in experiments.

B. Multi-level Object Selection Strategy

PianoBART is trained in a self-supervised way that maps
the corrupted octuple token sequences into the original ones.
The initial operation is to select specific objects and apply
certain transformations to corrupt the original structure. Then
the model is trained to reconstruct the modified objects.

To choose the objects to be corrupted, we design a multi-
level object selection strategy from two dimensions of the
octuple encoding, i.e., attributes and time span. For simplicity,
we refer to each octuple object as a “token” and each attribute
within an octuple object as an “element”. In terms of attributes,
we consider the Element Level and the Token Level, with
element and token as a single entity, respectively. In terms
of time span, we consider the Octuple Level, the Bar Level,
and the n-Bar Level, each covering a different period. The



combination of attributes and time span leads to 6 selection
methods, as shown in Table I.
Octuple Level. Figure 1 shows an example of the Octuple
Level selection method, which is inspired by the naive selec-
tion method in the mask language modeling (MLM) of BERT
[11]. In the Octuple-Element Level and the Octuple-Token
Level, we randomly choose independent elements or tokens
as target objects, respectively.

However, the octuple level method may cause informa-
tion leakage. In specific, music is repetitive, some musical
attributes (e.g., bar, position, and pitch) may be identical in
successive segments. Considering the case of simply masking
a single note, the missing attributes can be easily inferred
by directly replicating neighboring notes. The model can
therefore achieve relatively high accuracy without learning the
music context. However, the underlying musical structures and
patterns cannot be fully captured, which limits the performance
of downstream tasks.
Bar Level. To address the information leakage problem, the
Bar-Element Level method is proposed by [1], where elements
of the same type in the same bar are regarded as a unit and
selected simultaneously. Moreover, we further present the Bar-
Token Level method, which chooses all the complete tokens
within the same bar at the same time.

However, in musical compositions, some elements do not
strictly repeat within a whole bar. For example, as shown in
Fig. 1, the “PitchA4” only repeats for half a bar. Although
the information leakage is mitigated at the bar level, it’s more
likely to cause information loss, when a whole bar that may
contain dozens of notes or tokens is masked [6].
n-Bar Level. To enhance the model’s generalization capacity,
we further design a novel n-Bar Level Method, where the time
span n is randomly chosen and defined as follows:

n = inf{n :

p+n∑
i=p

dur(Ti) ≥
m

64
}. (1)

where p is the number of an initially selected token Tp, Ti

is the ith token in the octuple sequence, dur() represents the
duration of a token, and m is a random integer in [1, 128].
The n-Bar-Element Level or the n-Bar-Token Level is to select
n consecutive elements or tokens at a time, respectively. For
example, assuming there are 4 quarter-notes in a measure, only
the first note is selected (n = 1) if m ∈ [1, 16], the first two
notes are selected (n = 2) if m ∈ [17, 32], and so on.

According to Equation (1), the minimum selected time span
is a hemidemisemiquaver (1/64) and the maximum is two
whole notes (2 bars in 4/4 time signature), which is the
common range of duration for a note. Compared to the Bar
Level method (equivalent to the 1-Bar-Level), the selection
range of n-Bar Level is optional, not limited to a single
bar, which is more flexible. This way can effectively prevent
information loss and avoid information leakage. Furthermore,
the dynamic selection range helps the model to learn more
structural relations in music like intra-bar and inter-bar con-
nections. Therefore, high-level semantic information of music,

TABLE I
MULTI-LEVEL OBJECT SELECTION STRATEGY.

Element Level Token Level

Octuple Level Octuple-Element Level Octuple-Token Level

Bar Level Bar-Element Level Bar-Token Level

n-Bar Level n-Bar-Element Level n-Bar-Token Level

such as chords (a fixed combination of adjacent pitches), is
more likely to be captured by the n-Bar Level method.

C. Pre-training PianoBART

To train PinaoBART, we utilize the noising approaches
of BART [14], which consists of five transformations. By
combining these transformations, PinaoBART enables any
type of corruption to the original music sequence, forcing the
model to reason more about the musical context. For each
transformation, we apply different object selection methods.
(1) Token Masking. Elements or tokens are randomly sampled
and replaced with the [MASK] token. For this task, we use
four object selection methods, including the Octuple-Element
Level, the Octuple-Token Level, the n-Bar-Element Level, and
the n-Bar-Token Level.
(2) Token Deletion. Some of the objects are randomly deleted
with a probability of 15%. It is evident that deleting the
element-level object would cause alignment issues. Therefore,
we only allow the Octuple-Token Level and the n-Bar-Token
Level selection methods for this task.
(3) Text Infilling. Spans of objects are replaced with a single
[MASK] token. Similar to the Token Deletion task, we also
employ the Octuple-Token Level and the n-Bar-Token Level
selection methods for this task.
(4) Sentence Permutation. For text, sentence permutation
refers to randomly shuffling the sentence order [14]. In music,
however, there are few concepts corresponding to sentences.
Obtaining such concepts from MIDI is not feasible, and
manual annotation requires specialized knowledge. To this
end, we treat each bar as a “simplified sentence”. We adopt
the Octuple-Token Level and the Bar-Token Level method to
randomly split the music and shuffle.
(5) Document Rotations. A token is selected, and then the
sequence is rotated around the chosen token. Since we only
need to choose one token at a time, we only utilize the
Octuple-Token Level choosing method for this task.

During pre-training, PinaoBART is optimized with a recon-
struction loss—the cross-entropy between the decoder’s output
and the original token sequence.

IV. EXPERIMENTS AND RESULTS

In this section, we first present the experimental setup in this
study. Then we conduct a series of evaluations and analyze the
results to verify the performance of PinaoBART.



TABLE II
PRETRAINING PERFORMANCE.

Model Time Epoch Parameter Accuracy
MusicBERT [1] 10.06 d 500 114 million 76.01%
MidiBERT [2] 6.44 d 500 111 million 79.60%
PianoBART 3.19 d 268 225 million 96.67%

TABLE III
RESULTS OF MUSIC CONTINUATION ON MAESTRO [19].

Model PFSGT ↑ PFSprompt↑ PCHE ↓ GS ↓

Music Transformer [3] 0.1721 0.1903 0.496 0.140
Pop Music Transformer [5] 0.7742 0.7647 0.360 0.015

PianoBART (w/o pre-train) 0.1502 0.1349 0.237 0.133
PianoBART-simple 0.8495 0.8427 0.253 0.006
PianoBART 0.8245 0.8666 0.213 0.001

A. Experimental Setup

We pre-train PianoBART with 8 layers of 8 attention heads
in each of the encoder and decoder, and a hidden size of 1024,
resulting in 225M parameters. The batch size is 16 sequences,
each with a maximum length of 1024 octuple tokens. The
training is conducted on two NVIDIA V100 GPUs for 3
days. We use Adam optimizer and set the learning rate to
2e-5, and L2 weight decay to 1e-2. We clip the gradient
with the maximum norm of 3. The training is early stopped
when the loss has not decreased for 30 consecutive epochs.
During pre-training, PianoBART adopts the proposed multi-
level object selection strategy and randomly selects one of
the 5 transformations to dynamically corrupt the data for each
batch.

B. Pre-training

We collect five public available piano MIDI datasets
(Pop1K7 [7], ASAP [16], POP909 [15], Pianist8 [2], and
EMOPIA [17]) to train PianoBART. These datasets contain
Western classical music as well as piano covers of pop
music, including 4166 pieces in total. We convert MIDI files
into Octuple sequences and split them into segments with
1024 tokens, which results in 8393 segments for pre-training.
MusicBERT [1] and MidiBERT [2] are used as baselines and
are pre-trained with the same data and resources. Each model
was trained five times and the average performance is shown
in Table II. Among the baselines, PianoBART achieves the
shortest pre-training time with a speed faster than baselines,
reaching the best reconstruction accuracy of over 96%.

C. Fine-tuning

We fine-tune PianoBART on two types of downstream
tasks: music generation and understanding. In this work, music
generation involves conditioning the model with a fragment of
piano performance as the prompt and producing a continua-
tion. The encoder takes the prompt as input and the decoder
autoregressively generates the target music. We leverage the
stochastic temperature-controlled sampling method [7] to im-
prove the diversity of generated samples.

TABLE IV
RESULTS OF MUSIC CONTINUATION ON GIANTMIDI [20].

Model PFSGT ↑ PFSprompt↑ PCHE ↓ GS ↓

Music Transformer [3] 0.1137 0.0867 0.476 0.018
Pop Music Transformer [5] 0.5762 0.5640 0.378 0.019

PianoBART (w/o pre-train) 0.1793 0.1658 0.055 0.165
PianoBART-simple 0.7334 0.6984 0.508 0.083
PianoBART 0.7708 0.7354 0.224 0.071

The music understanding consists of two token-level tasks
(velocity prediction and melody extraction), and two sequence-
level tasks (emotion classification and composer classifica-
tion). The same token sequence is fed into the encoder
and decoder. For token-level tasks, each input token corre-
sponds to an output label. The hidden state of the top-layer
decoder is used to classify each token. For the sequence-
level tasks, the final hidden state of the decoder is fed into
an additional Attention-based Weight Average Layer [2] to
map the decoder’s output sequence to a single label. We
compare PianoBART with previous works on symbolic music
understanding, including MusicBERT [1] and MidiBERT [2].

(1) Music Continuation. Since most music-generative mod-
els are auto-regressive sequence-to-sequence models [3], [5],
it’s appropriate to evaluate with a continuation task. We fine-
tune PianoBART on two MIDI datasets: MAESTRO [19]
includes 1276 recordings, and GiantMIDI-Piano [20] contains
7236 pieces of classical music, from which we select 1383
songs. Given our resource constraints, we randomly crop
segments with 1024 octuple tokens as the prompt and the
following 1024 tokens as the continuation.

We compare PianoBART with Music Transformer [3] and
Pop Music Transformer [5] on Pitch Fréchet Similarity (PFS),
Pitch Class Histogram Entropy (PCHE), and Grooving pattern
Similarity (GS). PFS measures the pitch distance of generated
results from the ground truth (GT) [21]. We also test the PFS
between generated results and the given prompt to measure
repeated patterns. PCHE reflects the stability of the pitch
distribution and GS measures the coherence of rhythm [22].
Both PCHE and GS concern the music itself and we compute
their absolute difference with GT. Results are shown in Table
IV and Table III. We observe that PianoBART outperforms
baselines by a large margin, which shows the effectiveness of
PianoBART. We also see that PianoBART supports generating
music of arbitrary length, while [3], [5] can only produce
sequences of limited length.

(2) Velocity Prediction. The velocity in music indicates
the level of dynamics and corresponds to the perceptual
loudness of notes. Learning the velocity is helpful in modeling
expressive piano performance [23], [24]. Following [2], in our
experiment, we quantize MIDI velocity values (0-127) into 6
levels. Velocity prediction is regarded as a 6-class classification
task. We adopt the GiantMidi dataset [20] and train the model
to predict the velocity level for each note. Table V shows the
classification accuracy. It’s apparent that the performance is
generally not high, which may be because velocity is a rather



TABLE V
THE TESTING CLASSIFICATION ACCURACY OF DIFFERENT MODELS ON FOUR MUSIC UNDERSTANDING TASK (VELOCITY PREDICTION, MELODY

EXTRACTION, EMOTION CLASSIFICATION AND COMPOSER CLASSIFICATION). THE BEST ACCURACY IS ACHIEVED BY PIANOBART IN ALL THESE TASKS.

Token-level Tasks Sequence-level Tasks

Model Velocity Melody Emotion Composer (Pianoist8) Composer (ASAP)

MusicBERT [1] 51.23% 92.47% 71.06% 86.05% 94.27%
MidiBERT [2] 48.57% 92.53% 67.59% 79.07% 96.18%

PianoBART (w/o pre-training) 38.55% 82.40% 58.33% 69.77% 78.34%
PianoBART-simple 51.57% 92.50% 66.67% 83.72% 96.32%
PianoBART 51.63% 92.62% 73.15% 88.37% 97.45%

subjective factor related to the dynamics of performers.
(3) Melody Extraction. Melody is the most intuitive and

important element of a musical composition. In the symbolic
domain, melody extraction is to identify the melody notes in a
MIDI file of polyphonic piano music [25], [26], which is a crit-
ical token-level understanding task. We fine-tune PianoBART
on the POP909 dataset [15] that contains piano covers of 909
pop songs, with labels of melody, bridge, and accompaniment
for each note. The performance is evaluated by classification
accuracy and the results are shown in Table V. There is little
performance difference between the compared methods, with
PianoBART achieving slightly better accuracy.

(4) Emotion Recognition. Music is a natural carrier to
express and convey emotion. Understanding the overall emo-
tion of music [27], [28] is of great significance for topics
such as music recommendation and personalized music gen-
eration. In this paper, emotion recognition is treated as a
4-class classification problem. We adopt the EMOPIA [17],
an emotion-labeled symbolic music dataset for this task. The
emotional annotation of each clip is labeled using the 4-class
taxonomy (HVHA, HVLA, LVHA, LVLA). Table V shows
that PianoBART outperforms compared baselines, showing its
ability in symbolic-domain emotion recognition.

(5) Composer Classification. Recognizing a composer of
a piece [29], [30] used to be reserved for experts in music
theory, which is a fine-grained discriminative task compared
to genre or style classification. We use the Pianist8 dataset
[2] and the ASAP dataset [16] for this task. Pianist8 consists
of 411 original piano pieces performed by eight composers.
ASAP contains 1068 MIDI pieces of Western classical piano
music from 15 composers. Table V demonstrates the strengths
of PianoBART on this professional sequence-level music com-
prehension task.

D. Ablation Study

We design two variants (PianoBART (w/o pretraining) and
PianoBART-simple) to validate the effects of pre-training and
the proposed multi-level object selection strategy. (1) Piano-
BART (w/o pretraining) does not initialize the model with the
pre-trained parameters, and only uses the data of downstream
tasks to train PianoBART from scratch. (2) PianoBART-simple
only uses the Octuple-Token Level method to select the object
to be corrupted for any pre-training transformation.

Fig. 2. Visualization results of generated examples on ablation variants.
PianoBART (w/o pretraining), PianoBART-simple, and PianoBART are all
continued from Prompt.

Table IV and Table III reflect the results of ablated vari-
ants on music continuation. Figure 2 shows the piano-roll
visualization of MIDI produced by ablated variants. We can
see that the lack of pre-training performs worse on PFS and
struggles in continuous music generation. PianoBART-simple
achieves better PFS scores but lacks clear and coherent musical
patterns. Notably, PianoBART generates harmonious long-
term music with coherent rhythm, showing the effectiveness
of pre-training and the proposed multi-level selection strategy.
We provide MIDI demos in the supplementary material and
recommend readers to listen for an intuitive experience.

Table V shows the ablation results on four music under-
standing tasks. It’s obvious that the absence of pre-training
significantly affects the accuracy, while using the pre-trained
model to initialize and fine-tune can improve the performance.
The results can be further improved by using PianoBART’s
multi-level object selection strategy, which demonstrates the
effectiveness of our method.



V. CONCLUSION

In this paper, we propose PianoBART, a comprehensive pre-
trained model designed for symbolic music understanding and
generation. By introducing the BART framework and devising
a multi-level object selection strategy, PianoBART exhibits
remarkable performance in generating coherent music and un-
derstanding musical patterns. The ablation results demonstrate
the effectiveness of the pre-training and the proposed multi-
level object selection strategy. PianoBART holds significant
potential for advancing music study and creation. Future works
involve further enhancements in the model’s performance and
the incorporation of expert knowledge.
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