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ABSTRACT

As an important part of Music Information Retrieval
(MIR), Symbolic Music Understanding (SMU) has gained
substantial attention, as it can assist musicians and amateurs
in learning and creating music. Recently, pre-trained lan-
guage models have been widely adopted in SMU because
the symbolic music shares a huge similarity with natural
language, and the pre-trained manner also helps make full
use of limited music data. However, the issue of bias, such
as sexism, ageism, and racism, has been observed in pre-
trained language models, which is attributed to the imbal-
anced distribution of training data. It also has a significant
influence on the performance of downstream tasks, which
also happens in SMU. To address this challenge, we pro-
pose Adversarial-MidiBERT, a symbolic music understand-
ing model based on Bidirectional Encoder Representations
from Transformers (BERT). We introduce an unbiased pre-
training method based on adversarial learning to minimize
the participation of tokens that lead to biases during train-
ing. Furthermore, we propose a mask fine-tuning method
to narrow the data gap between pre-training and fine-tuning,
which can help the model converge faster and perform better.
We evaluate our method on four music understanding tasks,
and our approach demonstrates excellent performance in all
of them. The code for our model is publicly available at
https://github.com/RS2002/Adversarial-MidiBERT.

Index Terms— Music Information Retrieval (MIR),
Symbolic Music Understanding (SMU), Adversarial Learn-
ing, Bidirectional Encoder Representations from Transform-
ers (BERT)

1. INTRODUCTION

Music Information Retrieval (MIR) plays a crucial role in
various fields, such as the recommendation systems in mu-
sic apps and the AI agents for music creation. With the ad-
vancement of computer music, symbolic music, which repre-
sents music through a structural sequence of notes, has gained
widespread attention because most current music is initially
created and recorded using symbolic music formats like MIDI
[1]. Symbolic Music Understanding (SMU) has been a key
research direction within MIR, aiming to assist musicians and

amateurs in learning, teaching, and creating music.
Given the similarity between symbolic music and natural

language, language models have been widely used in SMU.
For example, the Bidirectional Encoder Representations from
Transformers (BERT) [2] model has shown promising perfor-
mance in SMU [3, 4]. An important factor in the success of
current language models, especially Large Language Models
(LLMs), is their use of large amounts of unlabeled data to
pre-train the models to learn basic data structure and relation-
ships. This pre-training mechanism has also been effective in
domains with limited data, such as music [5] and signals [6],
which can help improve model performance in downstream
tasks [7].

Currently, the most popular pre-training method in lan-
guage model is Mask Language Model (MLM) [2], which is
also widely used in pre-trained SMU models [3, 4, 5]. How-
ever, due to dataset imbalances, it can lead to bias problems
like discrimination in sexism, ageism, and racism in the field
of Natural Language Processing (NLP) [8, 9]. For example, in
the sentence “She is good at math.”, the MLM model would
randomly mask some tokens and train the model to recover
them. If the masked sentence becomes “[MASK] is good at
math.”, the model can only recover it according to the train-
ing data distribution to achieve the highest accuracy, instead
of considering the contextual relationship, because there is
no information pointing to the subject. When the training set
data distribution about gender in different context scenarios is
imbalanced, the model may prefer to recover the [MASK] as
“He”, resulting in a gender bias problem.

Recently, some studies have indicated that the bias prob-
lem can also significantly harm the model performance in
downstream tasks including classification and generation [9].
The MLM-based pre-trained models in other areas also suf-
fer from the same problem since the context-free tokens can
only be recovered by the data distribution. However, most
current methods to solve this problem are limited to the field
of NLP and are difficult to transfer to other areas. Most of
these methods can only solve single bias problems like sex-
ism [10] and region [11], but other areas do not have a similar
concept. For example, data augmentation [12] is a promising
method in NLP, but due to the bias problem in other fields like
music and signal not being as clear as in natural language, we
do not know how to effectively clean, generate or modify the
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Fig. 1. Network Architecture

data without sufficient domain-specific knowledge.
To address the bias problem in SMU, we first need to

consider what we want the model to learn during MLM pre-
training. It should be the music structure, relationships, and
regularities like basic mode, riff regularities, and modulation
regularities, rather than the harmony, chord, or melody direc-
tion within specific styles, where those domain-based knowl-
edge would also influence the model performance when the
test set has a significant domain gap with the training set. In
other words, we want the model to acquire context-dependent
information rather than relying solely on the training set’s
data distribution.

Based on this premise, we propose Adversarial-MidiBERT
for SMU: (1) We design an adversarial mechanism to try
avoiding masking those context-free tokens to mitigate the
bias problem. (2) We propose a mask fine-tuning method that
adds random [MASK] tokens during fine-tuning to narrow
the data gap between pre-training and fine-tuning. This ap-
proach efficiently improves the convergence speed and model
performance. (3) Experimental results show that our method
achieves excellent performance on four music understanding
tasks, including composer classification, emotion classifica-
tion, velocity prediction, and melody extraction.

2. PROPOSED METHOD

2.1. Overview

The main structure of our Adversarial-MidiBERT is illus-
trated in Fig. 1. It takes BERT [2] (the encoder part of the
Transformer [13]) as the backbone, whose bi-directional at-
tention mechanism can efficiently capture the relationships
in music. To adapt BERT for the SMU task, we modify the
bottom embedding layer to encode music information and the
top output heads for pre-training and downstream tasks.

To embed MIDI music information, we first employ Octu-
ple [3] to represent the symbolic music structure. It transfers
each MIDI file into a sequence of tokens, where each token
has eight attributes: time signature (TS), tempo (BPM), bar

position (BAR), relative position within each bar (POS), in-
strument, pitch, duration, and velocity. We then use eight em-
bedding layers to encode these eight attributes respectively
and concatenate them together.

As for the top layer of our model, there are four dif-
ferent heads: masker, recoverer, token-level classifier, and
sequence-level classifier, all of which share the same back-
bone. During pre-training, we use the masker to generate the
probability of masking each token, and the recoverer would
recover the masked tokens. During fine-tuning, we use the
classifier heads for classification tasks. The sequence-level
classifier generates a single label for a whole music piece,
useful for tasks like composer classification and emotion
classification. The token-level classifier generates a label
sequence corresponding to each token, useful for tasks like
velocity prediction and melody extraction.

To address the bias problem in pre-training, we design an
adversarial learning mechanism. The masker tries to mask
tokens that are difficult for the recoverer to recover, while
the recoverer tries to recover all masked tokens. After sev-
eral epochs, the masker selects context-free tokens with the
highest probability, as they can only be inferred according to
the training data distribution, leading to the lowest recovery
accuracy. We then freeze these tokens to prevent the recov-
erer from masking them in subsequent epochs. We also apply
an unfreezing mechanism, randomly unfreezing some frozen
tokens to avoid incorrect freezing. This adversarial process
continues until the model converges.

During fine-tuning, we design a mask fine-tuning mecha-
nism, where random [MASK] tokens replace input tokens to
reduce the gap between pre-training and fine-tuning. This ap-
proach improves convergence speed and model performance.

2.2. Unbias Pre-train

The pre-training process is shown in Fig. 2. First, we perform
random transposition to expand the training data, as music
datasets are limited. The transposition operation randomly
raises or lowers the entire pitch according to the twelve-tone
equal temperament within an octave. The transposition range
limitation ensures that the style or emotion of the song is not
significantly changed by the shift in pitch register. After that,
we convert the MIDI file to an Octuple token sequence as the
model input.

Within each epoch, the masker first generates the masking
probability of each token, and the tokens with the highest p%
masking probabilities are chosen. We follow a similar method
to BERT, using the [MASK] token to replace 80% of the cho-
sen tokens and random tokens to replace the remaining 20%.
The masked Octuple sequence is then input to the recoverer.
We can calculate recovery loss of each masked token accord-



Fig. 2. Pre-train Process: The blue tokens represent the frozen
tokens, which cannot be selected as [MASK] tokens.

ing to the following equation:

Li =

8∑
j=1

wjCrossEntropy(x̂i,j , xi,j) ,

Lrecoverer =
∑
i∈S

Li ,

(1)

where xi,j represents the jth attribute of the ith token, x̂ rep-
resents the recovered token, wj is the weight of the jth at-
tribute, and S is the set of masked token indices. The re-
coverer’s loss value is the sum of the recovery loss for those
masked tokens. We notice that different attributes have vary-
ing convergence speeds and performance, so we design a dy-
namic weight to balance the loss between them. At the begin-
ning of training, w1 ∼ w8 are set equally to 0.125. Then, in
the nth epoch, wj is set as:

wj =

1
aj∑8
i=1

1
ai

, (2)

where ai is the average recovered accuracy of the ith attribute
in the (n − 1)th epoch. This way, the recoverer pays more
attention to the attributes with lower accuracy.

The recovery loss of each token is also used to generate
the learning target of the masker, which aims to lower the
recovered accuracy of the recoverer by selecting tokens with
high loss values. To achieve this, we set the learning target of
the top q% tokens with the highest loss values as 1 and the top
q% tokens with the lowest loss values as 0. The loss function
of the masker can be represented as:

Lmasker =
∑
i∈I0

MSE(pi, 0) +
∑
i∈I1

MSE(pi, 1) , (3)

Table 1. Model Configurations
Configuration Our Setting
Input Length 1024

Network Layers 12
Hidden Size 768

Inner Linear Size 3072
Attn. Heads 12

Dropout Rate 0.1
Optimizer AdamW

Learning Rate 10−4 (pre-train), 10−5 (fine-tune)
Batch Size 8

Parameters Mentioned in (15,30,30,10,15)Section 2 (p, q, a, b, k)
Total Number of Parameters 115 Million

where pi is the masking probability generated by the masker
for the ith token, and I0, I1 represent the token index sets with
targets set to 0 or 1, respectively.

After repeating this process for k epochs, we believe the
tokens with the highest masking probabilities are the most
challenging to recover. These tokens correspond to context-
free tokens, as they can only be predicted based on the data
distribution of the training set, leading to the lowest accuracy.
As a result, we freeze the top a% tokens within each song
to avoid them being chosen in the subsequent training, which
can be realized by maintaining a dictionary. Simultaneously,
we also randomly unfreeze b% of the frozen tokens to prevent
incorrect freezing in the previous step.

2.3. MASK Fine-tune

During fine-tuning, we can still utilize the data augmentation
methods employed in pre-training if the downstream tasks
are tonality-independent. However, a potential gap may arise
since the [MASK] token is present in every epoch during pre-
training but is absent in fine-tuning. To address this, we ran-
domly replace p% of the input tokens with the [MASK] to-
ken during fine-tuning. This approach is also similar to the
dropout mechanism, which can also help mitigate overfitting.

3. EXPERIMENT

3.1. Experiment Setup

Our model configuration is shown in Table 1. We conduct our
experiment using two NVIDIA V100 GPUs. During training,
we observe that our Adversarial-MidiBERT occupies about
27GB GPU memory.

The dataset used in this paper is shown in Table 2. We use
five public MIDI datasets to train our model. We then conduct
four different downstream tasks to evaluate our model’s per-
formance, including two token-level classification tasks and
two sequence-level tasks:

• Composer Classification: Similar to style classification,
composer classification is a more challenging and fine-



Table 2. Dataset Decription
Dataset Pieces Task Task Level Class Number Used in Pre-training

ASAP [14] 1068 – – – Y
Pop1K7 [15] 1747 – – – Y
Pianist8 [16] 865 Composer Classification Sequence Level 8 Y

EMOPIA [17] 1078 Emotion Recognition Sequence Level 4 Y
POP909 [18] 909 Melody Extraction Token Level 3 Y

GiantMIDI [19] 10855 Velocity Prediction Token Level 6 N

Table 3. Model Performance in Different Tasks: The bold and underlined value indicates the best and second best result within
each task.

Model Pre-train Sequence-Level Classification Token-Level Classification
Accuracy Epochs Time Composer Emotion Velocity Melody

MidiBERT [4] 79.60% 500 6.44d 79.07% 67.59% 44.88% 92.53%
MusicBERT-QM [20] 80.57% 500 9.47d 83.72% 69.52% 46.71% 92.64%

MusicBERT [3] 76.01% 500 10.06d 86.05% 71.06% 38.79% 92.47%
PianoBART [5] 96.67% 268 3.19d 88.37% 73.15% 49.37% 92.62%

Adversarial-MidiBERT (ours) 81.47% 436 9.82d 97.92% 79.46% 45.58% 92.68%
Adversarial-MidiBERT (fine-tune w/o mask) 81.47% 436 9.82d 65.98% 70.53% 45.30% 92.55%

Adversarial-MidiBERT (w/o pre-train) – – – 79.76% 68.75% 38.70% 87.98%

grained task. It requires the model to identify which com-
poser created the songs.

• Emotion Recognition: The music emotions in EMOPIA
[17] are divided into four types: HVHA, HVLA, LVHA,
and LVLA. This task requires the model to classify each
song into one of these types.

• Melody Extraction: Each song has different sections, in-
cluding melody, bridge, and accompaniment. This task re-
quires the model to identify which paragraph each token
belongs to.

• Velocity Prediction: Since many MIDI files do not include
velocity information, it is important to predict the veloc-
ity. We divide velocity into six types and train the model to
predict it. To avoid information leakage, we use GiantMIDI
[19], which does not participate in pre-training and has its
velocity information masked. Since our device could not
support training using the full dataset, we select only the
first 1000 pieces for the experiment.

We split each dataset into 80% training set, 10% vali-
dation set, and 10% testing set. We employ the same early
stopping strategy as previous works [5, 4], where the train-
ing would stop if the model’s accuracy does not increase on
the validation set for 30 consecutive epochs. We also set the
maximum training epochs to 500.

3.2. Experiment Result

In this section, we compare our method with other SMU mod-
els, including MidiBERT [4], MusicBERT [3], MusicBERT-
QM [20], and PianoBART [5]. The main differences between
these methods lie in their pre-training approaches. For fair-
ness, these BERT-based models use the same backbone as
our method. The experimental results are shown in Table

3. It can be seen that our method outperforms the previous
BERT-based methods in most tasks, but loses to PianoBART
in pre-training and velocity prediction. This may be influ-
enced by the model structure, as the auto-regressive mech-
anism of the decoder structure in Bidirectional and Auto-
Regressive Transformers (BART) [21] makes it more suitable
for sequence-level tasks. However, it can be noticed that our
model has an extremely significant increase in performance
on sequence-level tasks.

We also conducted an ablation study to illustrate our
method’s performance without pre-training and without
masking during fine-tuning. The results show that the model’s
performance decreases to varying degrees in these cases,
demonstrating the effectiveness of our proposed mechanisms.
Additionally, we observe that our model has a faster conver-
gence speed than others. By the end of the first epoch, our
method achieves relatively high accuracy in all downstream
tasks.

4. CONCLUSION

In this paper, we present Adversarial-MidiBERT for SMU,
the first method to address the bias problem of pre-trained
models in MIR through adversarial pre-training method. Ad-
ditionally, we introduce a mask fine-tuning approach that
significantly enhances the model’s accuracy and convergence
speed on downstream tasks. Our method achieves remarkable
performance on four SMU tasks, especially on the sequence-
level tasks. In the future, we aim to explore the application of
our method to music generation tasks and NLP tasks.
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