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Abstract The impressive performance of ChatGPT and other foundation-model-based products in human

language understanding has prompted both academia and industry to explore how these models can be

tailored for specific industries and application scenarios. This process, known as the customization of domain-

specific foundation models, addresses the limitations of general-purpose models, which may not fully capture

the unique patterns and requirements of domain-specific data. Despite its importance, there is a notable lack

of comprehensive overview papers on building domain-specific foundation models, while numerous resources

exist for general-purpose models. To bridge this gap, this article provides a timely and thorough overview of

the methodology for customizing domain-specific foundation models. It introduces basic concepts, outlines

the general architecture, and surveys key methods for constructing domain-specific models. Furthermore,

the article discusses various domains that can benefit from these specialized models and highlights the

challenges ahead. Through this overview, we aim to offer valuable guidance and reference for researchers and

practitioners from diverse fields to develop their own customized foundation models.

Keywords artificial intelligence; domain-specific foundation model; multi-modality foundation model; pre-

training foundation model; fine-tuning

1 Introduction

ChatGPT has redefined people’s understanding of artificial intelligence with its outstanding performance.
As its core technology, the Large Language Model (LLM) has become an essential tool for researchers
and practitioners across various fields to improve their workflows. General-purpose foundation models
are usually trained on large public datasets, enabling them to learn and address a wide range of common
problems. However, these datasets cannot fully encompass all the specialized knowledge and technical
details of certain specific domains. As a result, although general-purpose foundation models possess broad
general knowledge, they lack the necessary depth to meet the complex needs of some specific fields [1].
Therefore, constructing domain-specific foundation models tailored to the needs of particular industries
has become particularly important. Domain-specific foundation models, also known as industry-specific
foundation models, are developed using data and applications specific to a particular field. Compared
to general-purpose foundation models, they are trained with a large amount of domain-specific data,
enabling them to more accurately understand and generate domain-specific professional content.

With the widespreading of ChatGPT-like products, the scope of the “foundation model” is gradually
expanding. It is thus necessary to first make a clear definition of the foundation model discussed in this
article so as to lay the foundation for the subsequent discussion on the customization of domain-specific
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Table 1 Examples of foundation models with two different types

Types of foundation models Examples

Single-modality foundation models

VGG [2], ResNet [3], GPT-1 [4], GPT-2 [5], GPT-3 [6], GPT-3.5 turbo, BERT [7],

GLM [8,9], LLaMA [10], LLaMA-2 [11], iGPT [12], LVM [13], SAM [14], BART [15],

T5 [16], Time-LLM [17], UniTS [18], ST-LLM [19]

Multi-modality foundation models
CoDi [20], CoDi-2 [21], Claude-3, GPT-4 [22], LLaVA [23], BriVL [24], ImageBind [25],

NExT-GPT [26]

foundation models. The foundation models mentioned in this article are neural network models that
consists of at least one of the five modules in a general multi-modality foundation models (which will be
detailed later). These models also exhibit the following characteristics:

• Big data: utilizing a large volume of data covering various scenarios for model training to provide
ample knowledge for the model.

• Large parameters: the model possesses a huge number of parameters, sufficient to embed the
knowledge implied by the big data into the model’s parameters.

• Versatility: the model’s input data format and data processing workflow can adapt to different
requirements across various task scenarios.

• Generalization: the model exhibits a certain level of generalization, allowing it to perform well
even in unknown data domains.

Based on the number of modalities a foundation model can process, they can be classified into single-
modality foundation models and multi-modality foundation models, as shown in Table 1.

In the process of constructing domain-specific foundation models, a series of challenges will arise,
especially in the stages of data acquisition and preprocessing. For example, the domain-specific data
required may not be open-source or readily accessible, as it often has a high degree of confidentiality.
Additionally, the modalities of domain-specific data might differ from those used for training general-
purpose foundation models, making it difficult to adapt existing models to process this data. Furthermore,
the environments where the domain-specific data collected may differ significantly from those for the pre-
training datasets, resulting in domain-specific knowledge that pre-trained models are not familiar with.
In general, constructing a domain-specific foundation model is challenging and costly, with significant
implications for technical security, but it is expected to yield high economic benefits. Therefore, it is
essential to thoroughly review and explore the methodologies for constructing these models, providing
guideline for both researchers and practitioners.

It is noteworthy that previous review articles have predominantly focused on the development of
general-purpose foundation models. Recently, while several review articles have begun to explore the
domain-specific adaptation of foundation models, there is a significant gap in the literature for a compre-
hensive exploration of adaptation strategies that are applicable to foundation models of all modalities,
extending beyond language, vision, or any single modality, to various application domains. We summarize
representative surveys or review articles on foundation models in Table 2. This paper aims to provide
researchers and practitioners interested in building domain-specific foundation model applications with
methodological references by introducing the key methodologies therein. Also, practical examples and
future directions will be discussed.

2 Preliminaries of multi-modality foundation models

In this section, we will elaborate on the preliminary technological basis for customizing domain-specific
foundation models. We begin with the architecture of foundation models, detailing all functional mod-
ules. Then, from four perspectives - feature extraction, modality alignment, scaling laws, and emergent
phenomena - we will explain the foundational technologies that enable each module to contribute to the
high performance of foundation models.

2.1 Architecture of foundation models

According to state-of-the-art research on foundation models, it is widely considered that multi-modality
foundation models can encompass all functionalities and structures of single-modality foundation models.
Essentially, a single-modality foundation model implements only a subset of the functionalities of a multi-
modality foundation model.
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Table 2 Summary of representative surveys or review articles on foundation models

Article Modality Domain Adaptation Domain Year

Zhao et al. [27] Language No General 2023

Liu et al. [28] Graph No General 2023

Mao et al. [29] Graph No General 2024

Du et al. [30] Vision-Language No General 2022

Yin et al. [31] Multi-modality-Language No General 2023

Yeh et al. [32] Time-series Data No General 2023

Jin et al. [33]
Time-series & Spatio-temporal

Data
No General 2023

Cao et al. [34] Multi-modality No General 2023

Zhou et al. [35] Multi-modality No General 2023

Zhang et al. [36] Multi-modality-Language No General 2024

Lai et al. [37] Language Yes Law 2023

Ahn et al. [38] Language Yes Mathematics 2024

Li et al. [39] Language Yes Finance 2023

Thirunavukarasu et al. [40] Language Yes Medicine 2023

Kazerouni et al. [41] Vision Yes Medicine 2023

Shahriar [42] Multi-modality Yes Arts 2022

Hou et al. [43] Language Yes Software Engineering 2023

Bariah et al. [44] Language Yes Telecommunications 2023

Zhou et al. [45] Language Yes Telecommunications 2024

Cui et al. [46] Multi-modality Yes Autonomous Driving 2024

Yang et al. [47] Language Yes General 2024

Ours Multi-modality Yes General -

Figure 1 The framework of multi-modality foundation models.

The five-module framework proposed for multi-modality foundation models in the paper [36] effec-
tively encompasses the architecture of multi-modality foundation models with language as the central
modality. However, the recent emergence of non-language foundation models, including vision foundation
models [13,14], graph foundation models [28,29], time series foundation models and spatio-temporal (ST)
foundation models [32, 33], indicates that the backbone of foundation models is expanding beyond lan-
guage modalities. Therefore, we propose that the structure of multi-modality foundation models can be
divided into the following five modules: Modality Encoder, Input Projector, Backbone Calculator, Out-
put Projector, and Modality Decoder. Figure 1 illustrates the framework of a multi-modality foundation
model with language as the central modality.

For multi-modality foundation models, we define the set of all input modalities as M . Generally, a
multi-modality foundation model has a central modality C. Using modality alignment techniques, the
multi-modality foundation model projects all the modalities it can handle onto this central modality.
Below, we define the five modules of the multi-modality foundation model and the input and output data
for each module, laying down the foundation for describing the architecture of foundation models in this
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paper.
Modality Encoder (ME) encodes the data DX of an input modality X into a feature vector FX :

FX = MEX(DX), X ∈ M. (1)

Input Projector (IP) projects the feature vector FX of a modality X into the feature vector FC of
the central modality C:

FC = IPXC(FX), X,C ∈ M. (2)

Backbone Calculator (BC) performs operations on the feature vector FC of the central modality C,
yielding results such as inference and generation F̂C :

F̂C = BCC(FC), C ∈ M. (3)

Output Projector (OP) projects the feature vector F̂C of the central modality C into the feature
vector F̂X of a modality X:

F̂X = OPCX(F̂C), X,C ∈ M. (4)

Modality Decoder (MD) decodes the feature vector F̂X of the output modality X back into the
original data format, resulting in the decoded data D̂X :

D̂X = MDX(F̂X), X ∈ M. (5)

According to the above definition, building a domain-specific foundation model entails choosing the
necessary modules — some of which may be optional — and assembling a model tailored to the specific
domain requirements, followed by training it with data pertinent to that domain.

2.2 Feature extraction

Feature extraction concerns extracting representative features from raw data. In the field of machine
learning, particularly deep learning, feature extraction is a crucial step. As raw data often contains a
significant amount of redundant and noisy information, feature extraction, which maps the data into
a more information-dense feature space, enables the models to understand data structure and patterns
more effectively.

In deep learning, neural networks can perform end-to-end feature extraction from raw data. However,
this manner often requires large amounts of data and computational resources to ensure good performance
and generalization. In each layer of neural networks, it transfers the output of previous layer to a new
vector space. This structure allows for a flexible definition of the output dimensions of each layer without
explicitly specifying the transformation. Leveraging these favorable characteristics, autoencoder learns
an effective representation of the data by minimizing the reconstruction error between the input vector
and the reconstructed vector. Autoencoder first compresses the input data into a low-dimensional feature
vector and then projects them back into the original data space by a decoder, as illustrated in Figure 2.
An important design principle behind the modality encoder and modality decoder metioned before, is
pairing of these components as autoencoders for training. As a variant of autoencoders, variational
autoencoder (VAE) aims to both minimize the reconstruction error and maximum the likelihood of the
input data to learn the distribution of the compressed vectors. For example, in the image modality,
VQGAN [48] is constructed in this manner. It has also been widely applied in subsequent generative
models [49,50].

2.3 Modality alignment

In the workflow of a single-modality foundation model, the architecture excludes input and output pro-
jectors, reflecting the absence of a requirement for cross-modality data processing. In contrast, multi-
modality foundation models must accommodate the processing of various data modalities, including both
the primary and ancillary modalities. To achieve data conversion between modalities through input pro-
jectors and output projectors, the key is to apply modality alignment. The goal of modality alignment is
to process the feature vectors of different modalities into a common feature space with the same dimen-
sion by using a loss function to characterize the correlation between feature vectors. Ideally, modality
alignment should ensure that raw data of different modalities carrying the same semantic information are
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Figure 2 The structure of autoencoder.

represented as the same point in the target feature space, which facilitates the realization of cross-modality
information transfer.

There are two main implementation methods for modality alignment: the fusion encoder architecture
and the dual encoder architecture [30]:

1. Fusion encoder: Fusion encoder encodes the multi-modality data by the self-attention or cross-
attention mechanism from transformer [51]. The attention mechanism can be represented as follows:

Attenton(Q,K, V ) = softmax(
QTK√

dk
)V, (6)

where query Q, key K, and value V are all intermediate features based on the input feature, and
dk refers to the dimension of Q and K. Self-attention-based mechanisms require concatenating the
feature vectors of the main and auxiliary modalities as input to the transformer to generate Q, K,
and V , allowing the model to automatically focus on the features of different modalities and achieve
cross-modality information fusion. For example, VL-BERT [52] concatenates the feature vectors
of text and images, and then uses the self-attention mechanism of transformer to aggregate and
align language-visual features. On the other hand, methods based on cross-attention mechanism
calculate Q, K, and V separately for the feature vectors of the two modalities, thereby achieving
cross-modality information fusion. For example, DiT [50] captures the relationship between text
and images by self-attention mechanism and then realizes the image generation controlled by text.
We illustrates the two fusion encoder architectures in Figure 3.

2. Dual encoder: As a multi-modality learning strategy, dual encoder trains a dedicated encoder
for each modality independently. The core idea of this architecture is to guide the learning process
of the two encoders in synchronization through semantic similarity metrics by leverage contrastive
learning methods. Then the output feature vectors of different encoders can be projected into the
same vector space. Specifically, this model is based on the hypothesis that if the feature vectors
output by the two encoders belong to the same feature space, the feature vectors with paired labels
should be closer in the vector space, and vice versa. Through this alignment method, we can expect
that the output results of encoders for different modalities describing similar objects or scenes will
be close enough. And even in an ideal state, they will converge to the same point in the feature
space. The key to achieving this goal is to construct a reasonable model architecture and thoroughly
train it on a large-scale dataset. Figure 4 shows the processing logic of the dual encoder.

However, the cost of one-to-one aligning each pair of modalities would be very high. Besides,
obtaining a dataset with each pair of modalities aligned is also challenging. To this end, some
researchers have proposed the bridging alignment (also known as binding alignment) strategy. This
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Figure 3 The structure of fusion encoder.

Figure 4 The structure of dual encoder.

method matches all other modalities with a central modality, thereby achieving the alignment of all
modalities in the semantic space. For example, ImageBind [25] takes image as the central modality,
while CoDi [20] takes text as the central modality. In this way, they effectively simplify the training
process of multi-modality alignment and improve the practicality and efficiency of the model. In
contrastive learning, the class imbalance in long-tailed datasets can lead to reduced effectiveness, as
most contrastive pairs consist of major classes instead of tail classes, making the model ineffective
for the minor classes. Therefore, [53] proposed a method to solve this problem.

2.4 Scaling law

Scaling law refers to the mathematical pattern about how the performance of a system changes as the
scale of the system increases. In the field of AI, especially in the research and application of foundation
models, scaling law describes a series of rules and phenomena about how model performance changes as
the model scale expands, including the number of parameters, dataset size, computational resources. It
uses quantitative analysis methods to reveal the intrinsic mechanism of the performance improvement of
foundation models.

[54] discussed how the inductive biases of different models affect the relationship between model
scale expansion and performance. They found that model architecture is indeed one of the key factors
affecting the benefits of model expansion. They also pointed out that although the standard transformer
architecture may not always achieve the best performance, it does exhibit the best scalability. In the fields
of computer vision [55] and natural language process [56], models based on the transformer architecture
have shown an exponential relationship between model scale and model performance.

Besides, [57] examined the impact of the number of downstream tasks and model scale on the perfor-
mance of instruction fine-tuning. They fine-tuned the models on a wide variety of tasks by a multi-task
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joint training method. As a result, the language model could learn a broader language representation
and knowledge, thereby enhancing its generalization ability on unseen tasks. During the joint training
process, knowledge transfer between different tasks is promoted through parameter sharing, significantly
improving the model’s generalization ability and performance. In addition, joint training also reduces the
time and computational resources required to train each task individually, improving training efficiency.
This phenomenon of model performance improving as task diversity increases is a manifestation of the
scaling law. [58] verified the phenomenon of model performance increasing with the number of tasks on
the large-scale benchmark OPT-IML Bench. Additionally, there are also studies that have separately
provided the model performance of natural language models [56] and autoregressive generative models of
various modalities [59] at different scales.

Although there is no unified form for the quantitative representation of the scaling law, it can be
generally represented as an exponential relationship between the model loss function and the model’s
parameters, dataset size, and computational resources. We use the loss function L(·) to characterize the
model’s performance, where a smaller loss function value represents better model performance. Eq. (7)
describes the performance of a model with a given number of parameters trained to convergence on a
sufficiently large dataset, where L(N) is the loss function, N is the number of trainable parameters of
the model, Nc is a constant, and αN is the power law exponent. Eq. (8) provides the performance
of a suitably sized model trained on a sufficiently large dataset under a given computational resource
constraint, where L(C) is the loss function, C is the given computational resource, Cc is a constant, and
αC is the power law exponent. Eq. (9) describes the performance of a foundation model trained with
early stopping strategy on a given dataset size, where L(D) is the loss function, D is the dataset size (in
tokens), Dc is a constant, and αD is the power law exponent.

L(N) ∝
(
Nc

N

)αN

, (7)

L(C) ∝
(
Cc

C

)αC

, (8)

L(D) ∝
(
Dc

D

)αD

. (9)

According to the above equations, when not constrained by other conditions, the model’s loss function
decreases exponentially as the number of parameters, computational resources, and training data vol-
ume increase. This means that by increasing the model’s parameters, investing more in computational
resources, and expanding the training data volume, the model’s performance can also be exponentially
improved.

2.5 Emergent phenomenon

The scaling law reveals that the scaling up of model size can lead to incremental improvements in model
performance. On the contrary, the emergent phenomenon refers to the new properties exhibited by the
model after reaching a critical point of scale expansion, one of which is a significant improvement in
model performance [60].

The emergent phenomenon essentially reveals the source of the superior performance of foundation
models. In the field of deep learning, especially in the domain of LLM, the emergent phenomenon has
been widely observed. For example, models like LLaMA have demonstrated exceptional comprehension,
generation capabilities, and even a certain degree of logical reasoning ability, which small language models
cannot achieve. As the model scale increases, the model can have more parameters and a more complex
structure, allowing it to capture the complex features and patterns in the data. Foundation models
often exhibit strong generalization capabilities, which is mainly because their abundant parameters can
store rich knowledge, enabling them to make accurate inferences and predictions on unseen data. It can
provide them adaptability and universality to different tasks, and even allows the model to truly learn
the underlying principles and reasoning methods in the data. [60] suggested that the emergence point
of the emergent phenomenon in LLMs can be influenced by the task and the prompting method used.
Specifically, the use of a chain-of-thought prompting approach can significantly enhance the LLMs’ ability
to handle complex reasoning tasks [61], thereby bringing forward the emergence point of the emergent
phenomenon.
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Table 3 Customization methods of domain-specific foundation models

Customization Method Customization Degree Difficulty Flexibility Computation

Based on general-purpose

foundation models

Low, only the input method of

domain knowledge is customized
Low Low Low

Based on pre-trained modules Medium, some modules can be customized Medium Medium Medium

Without pre-trained modules High, each module can be customized High High High

When building domain-specific foundation models, developers must select an appropriate model scale,
considering both the requirements of potential downstream tasks and user prompting patterns. An
increase in the number of model parameters raises the demand for computational resources and the risk
of overfitting. Consequently, there is a limit to the extent that parameters can be increased. The trade-
offs highlighted by this phenomenon are crucial for model deployment, offering significant insights for
both model design and application.

3 Key technologies for building domain-specific foundation models

This section delves into the technical pathways toward customizing domain-specific foundation models.
We will provide a detailed explanation of how to flexibly select and combine the appropriate modules from
five key components — modality encoders, input projectors, backbone calculators, output projectors, and
modality decoders based on the specific requirements of different domains. Additionally, we will analyze
concrete cases to help readers better understand and apply the methodologies discussed in this section.

We can categorize the customization of domain-specific foundation models into three levels, ranging
from low to high level of customization (i.e., from high to low reliance on general-purpose foundation
models or pre-trained modules):

1. Domain-specific enhancement based on general-purpose foundation models.

2. Customization of the foundation model based on pre-trained modules.

3. Construction of the foundation model without pre-trained modules.

Table 3 summarizes the characteristics of these three domain-specific foundation model customization
methods.

3.1 Domain-specific enhancement based on general-purpose foundation models

General-purpose foundation models offer comprehensive capabilities, making them suitable for a wide
array of task scenarios. When such a general-purpose foundation model can fully handle the required data
modalities, it renders unnecessary any modifications to its underlying architecture for model developers.
Instead, they can focus on implementing domain-specific enhancements.

Depending on whether the domain-specific enhancement requires altering the parameters of the foun-
dation model, we can further divide this into two types: plug-and-play domain-specific enhancement
and fine-tuning-based domain-specific enhancement. Table 4 categorizes and summarizes the methods of
domain-specific enhancement based on a full-architecture general-purpose foundation model.

3.1.1 Plug-and-play domain-specific enhancement

The generality, generalization capabilities, and reasoning abilities of general-purpose foundation models
enable them to serve as the foundation for domain-specific models. To achieve plug-and-play domain
enhancement without modifying the parameters of the foundation model, two approaches can be utilized:
leveraging existing knowledge or embedding new knowledge. The first approach aims to leverage
domain knowledge already stored within the general-purpose foundation model, as illustrated in Figure 5
(a). The second approach, embedding new knowledge, involves equipping the foundation model with the
ability to handle domain tasks by introducing domain-specific knowledge. This can be further divided
into two methods: embedding knowledge through prompts and embedding knowledge via an external
knowledge base. These methods are depicted in Figure 5 (b) and (c) respectively. The following sections
will provide a detailed explanation of these techniques.



Chen H L, et al. 9

Table 4 Specific-domain enhancement with the entire general-purpose foundation models

Customization Method
Parameter

Modification

Addition

of New

Modules

Domain

Knowledge

Provider

Specific Techniques

Plug

-and

-play

Utilizing

Existing

Knowledge

Hard

Prompting
No No Deployer PET [62]

Soft

Prompting
No Yes Deployer

Prefix Tuning [63],

P-tuning [64]

Adding New

Knowledge

Prompts No No User
LongRoPE [65],

Transformer-XL [66]

External

Knowledge

Base

No Yes Deployer

RAG [67],

GraphRAG [68],

RankRAG [69]

Fine

-tuning

-based

Adapter-Based Yes Yes Deployer

Adapter [70],

AdapterFusion [71],

IA3 [72], Model

Reprogramming [73]

Low-Rank Matrix

Decomposition
Yes Yes Deployer

LoRA [74],

LoHa [75],

LoKr [76]

Full Parameter

Fine-tuning
Yes No Deployer PEFT [77]

(a) (b) (c)

Figure 5 Plug-and-play domain-specific enhancement. (a) Invoking existing knowledge; (b) Knowledge embedding by prompts;

(c) Knowledge embedding by external knowledge base.

1. Invoking existing knowledge for domain enhancement: During the training process, a
general-purpose foundation model may have already enclosed domain knowledge. Prompt tun-
ing improves prompts to better invoke the model’s inherent domain knowledge, where ”tuning”
refers to the optimization of prompts. Specifically, it involves inserting a carefully crafted prompt
into the input data as context to improve the generated output. These carefully crafted prompts
can be natural language descriptions, examples, rules, or other text or embedding vectors that guide
the model to understand the task requirements. When generating outputs, the model will consider
these carefully crafted prompts to produce task-relevant results. Prompt tuning can be categorized
into hard prompts and soft prompts:

(a) Hard prompts: Hard prompt methods are common techniques in natural language processing
(NLP). They guide the language model’s output using interpretable and reusable handcrafted
words and tokens. Hard prompts are typically manually designed and tailored for specific
tasks, making them difficult to modify. PET (Pattern Exploiting Training) [62] is a classic
hard prompt learning method that models questions as cloze tasks and optimizes the final
output words. This method trains the model on a small amount of supervised data and
performs ensembling predictions on unsupervised data to guide the model.

(b) Soft prompts: Designing hard prompts requires experimental exploration and expertise,
and manually designed prompts may not align well with model’s data processing methods.
To simplify this process and enhance the flexibility of prompt tuning, researchers proposed
soft prompt-based tuning methods. Prefix Tuning [63] is a form of soft prompt tuning that
adapts to specific downstream tasks by adding learnable prefix vectors (soft prompts) to the
beginning of the input sequence. These prefix vectors, as part of the input, guide the model’s
output to meet task requirements. The advantage of prefix tuning is that it only updates these
prefix vectors rather than the model’s parameters, significantly reducing computational and
storage resource demands while retaining the rich knowledge learned by the pre-trained model.
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Building on prefix tuning, researchers introduced the P-tuning method [64]. P-tuning replaces
fixed or manually designed words and tokens with learnable soft prompts. Its core idea is to
treat prompts as part of the model that can be learned, allowing the model to learn not only
how to respond to given tasks but also how to generate the best prompts. These soft prompts
are typically a series of embedding vectors processed alongside the actual text input. Through
end-to-end training, the model automatically learns to adjust these embedding vectors for
better task performance. P-tuning combines the parameter efficiency of prefix tuning with the
flexibility of traditional hard prompt tuning. Soft prompts give the model greater freedom to
generate answers, potentially producing more diverse outputs but also increasing the risk of
generating inaccurate or irrelevant responses.

2. Knowledge embedding for domain enhancement: When the existing knowledge of a general-
purpose foundation model is insufficient to solve domain tasks, introducing new knowledge by
embedding additional background information can achieve higher quality output. This method is
known as knowledge embedding for domain enhancement.

(a) Knowledge embedding by prompts: Prompts, serving as a direct interface between the
user and the large language model, can be used to incorporate domain knowledge. However,
the method of knowledge embedding through prompts has a significant limitation: the amount
of embedded domain knowledge is restricted by the maximum prompt length of the model.
The limitation on the model’s ability to process longer text inputs stems from three core issues
of the Transformer architecture:

• Limitations of positional encoding: Transformer models typically generate fixed-
length positional encodings using sine and cosine functions, where each position in the sequence
is uniquely encoded. However, when the sequence length exceeds the maximum length used
during training, the model cannot effectively handle the additional text because it cannot
generate valid encodings for the new positions.

• Resource consumption of the attention mechanism: The attention mechanism is
the core of Transformer models, allowing the model to compute attention weights for each
element in the sequence. However, as the sequence length increases, the computational com-
plexity and memory requirements of this mechanism grow quadratically, leading to significant
resource consumption.

• Long-distance dependency issue: When handling long sequences, the Transformer
needs to span a large number of input tokens, which often results in problems such as gradient
vanishing or exploding. This makes it difficult for the model to capture dependencies between
elements that are far apart in the sequence.

To address the above issues, Lossless Long Text technology has emerged. It aims to enhance the
model’s ability to process long texts that exceed its input length limitations, allowing users to
input a large amount of domain knowledge directly through prompts into the large language
model as contextual information for domain enhancement. Lossless Long Text technology
expands the long text input capability of large language models in two directions: extrapolation
and interpolation:

i. Extrapolation: Extrapolation involves extending the model’s context window to handle
new texts that exceed the length of the training data. This typically involves improving the
positional encoding mechanism so the model can understand and process longer sequences.
Longformer [78] extends the ability to handle long texts effectively by combining local and
global attention mechanisms; BigBird [79] uses sparse attention mechanisms and reversible
layers to extrapolate the model’s long-sequence processing capabilities; LongRoPE [65]
improves positional encoding by introducing rotational transformations in self-attention,
allowing the model to handle long-distance dependencies and support inputs up to two
million tokens without impacting computational efficiency.

ii. Interpolation: Interpolation refers to enhancing the model’s ability to process long texts
within its existing sequence length capacity by adjusting and optimizing the attention
mechanism. This typically involves improvements to the attention mechanism so the model
can more effectively handle long-distance information. The BERT model [7] enhances
text understanding through pre-training with a bidirectional Transformer. XLNet [80]
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improves long text processing by using permutation language modeling and generalized
autoregressive pre-training to enhance the model’s internal representations. Transformer-
XL [66] is an improved Transformer model that introduces a recurrence mechanism to
address the issue of gradient vanishing in long text processing. This allows the model to
retain information from previous sequences while processing the current sequence, thereby
better understanding and generating long text content.

(b) Knowledge embedding by external knowledge base: In practical applications, users may
not be able to provide sufficient domain knowledge to enhance a general-purpose foundation
model. To address this issue, model deployers can augment the general-purpose foundation
model with a dedicated domain knowledge base. This method allows the general-purpose foun-
dation model to reference this external knowledge base when generating answers or performing
tasks, thereby obtaining the necessary domain information and context to provide more accu-
rate and targeted responses or solutions. Retrieval-Augmented Generation (RAG) [1, 67, 81]
technology was developed to achieve this purpose. RAG technology aims to enhance the
language model’s generation capabilities by leveraging an external document base without
retraining the model. It is particularly suitable for tasks requiring a customizable dynamic
knowledge base, such as question answering, text summarization, and fact-checking. The core
of RAG technology is the integration of a retrieval component that can quickly find information
relevant to the current task in a large document database during the generation process. Once
the relevant documents are retrieved, this information is used as additional contextual infor-
mation to aid the generation process. The advantage of RAG technology is that it combines
the generation capabilities of large language models with the knowledge provided by external
retrieval systems, without requiring domain knowledge themselves. Furthermore, because the
external knowledge base can be replaced as needed, RAG technology offers high flexibility and
adaptability.

In RAG, the two core challenges are how to retrieve useful information from the database and
how to organize that information to augment the generation of foundation models. For the
retrieval task, the earliest and most naive approach uses sparse retrieval that directly matches
data based on raw data like BM25 [82]. Inspired by the field of information retrieval, dense
retrieval like DPR [83] has been proposed, which projects raw data into a high-dimensional
space, potentially helping to capture semantic similarity better. However, a significant chal-
lenge is that even if the retrieved data is highly related to the original input in the semantic
space, we cannot guarantee that it will help the model generation, due to issues like polysemy.
To address this problem, some researchers have introduced other technologies like knowledge
graphs to aid the retrieval process [68]. [84] showed that adding noise can help enhance the
model performance compared to traditional dense retrieval methods. Additionally, the organi-
zation of the retrieved information can also directly influence the output quality. For example,
providing a ranking of the retrieved data [69] can improve model performance.

While the aforementioned technologies were initially proposed to enhance large language models in
specific domains, their applications are not limited to language models. With the development of foun-
dation model domains, these technologies are expected to be extended to foundation models of other
modalities.

3.1.2 Domain-specific enhancement based on fine-tuning

When plug-and-play domain enhancement techniques are difficult to implement or require embedding
too much domain knowledge into the general-purpose foundation model, or when deep modifications to
the general-purpose foundation model are necessary, we can turn to the strategy of domain enhancement
based on fine-tuning. This strategy aims to customize the required domain-specific foundation model
while preserving the pre-trained knowledge of the general-purpose foundation model as much as possible
by specific domain enhancement [85].

Fine-tuning techniques can be divided into three main types: adapter-based fine-tuning, low-rank ma-
trix decomposition-based fine-tuning, and full-parameter fine-tuning. Figure 6 (a), (b) and (c) illustrate
these three technical pathways respectively. In following sections, this paper will elaborate on these
techniques, sorted from low to high resource requirements and complexity needed for fine-tuning.
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(a) (b) (c)

Figure 6 Fine-tuning-based domain-specific enhancement. (a) Adapter-based tuning; (b) Low-rank-decomposition-based tuning;

(c) Full fine-tuning.

1. Adapter-based fine-tuning: Adapter-based fine-tuning [70] is a method that inserts small train-
able adapter modules into pre-trained models, aiming to efficiently adapt the model to specific
downstream tasks. During fine-tuning, only parameters of adapter modules are updated, while the
original parameters of the pre-trained model remain unchanged, reducing computational resources
and storage requirements while retaining the rich knowledge learned by the model during pre-
training. AdapterFusion [71] is an extension of adapter-based fine-tuning that allows the model to
learn multiple tasks or adapt to various data distributions simultaneously by fusing multiple adapter
modules, with each adapter module focusing on capturing task-specific features. Infused Adapter
by Inhibiting and Amplifying Inner Activations (IA3) [72] scales the activation layers by injecting
learned vectors into the attention and feed-forward modules of the Transformer architecture. Since
these learned vectors are only trainable parameters during fine-tuning, IA3 significantly reduces the
number of trainable parameters compared to traditional adapter-based fine-tuning, thereby reduc-
ing training costs and improving training efficiency. Additionally, IA3 does not introduce inference
latency because its adapter weights can be merged with the foundation model while maintaining
the flexibility and adaptability of the model, allowing customized fine-tuning for different tasks
and datasets. [73] proposes a method called Model Reprogramming that converts both the input
and output domains of a foundation model by adding two adapter layers, enabling more flexible
adaptation functionality.

2. Low-rank matrix decomposition based fine-tuning: Fine-tuning based on low-rank matrix
decomposition reduces the number of parameters that need to be updated by decomposing the
weight matrices in the pre-trained model into the product of low-rank matrices. Low-rank matrix
decomposition can capture the most important information in the weight matrices while keeping
the original pre-trained parameters unchanged during fine-tuning, updating only low-rank decom-
position matrices, thus reducing the computational and storage requirements during fine-tuning.
This method improves fine-tuning efficiency while maintaining or approaching the performance of
full-parameter fine-tuning.

(a) Low-Rank Adaptation (LoRA): Low-Rank Adaptation (LoRA) [74] achieves efficient fine-
tuning performance by decomposing model parameters into the product of low-rank matrices
using singular value decomposition (SVD). The principle of LoRA can be represented by the
following equation:

Wnew = Wold +∆W , (10)

where Wold is the original weight matrix, and ∆W is the low-rank update matrix, which can
be constructed by selecting the singular vectors corresponding to smaller singular values of
Wold. The singular value decomposition of Wold is given by:

∆W = UΣV T . (11)

Here, U and V are matrices obtained from the SVD of Wold, and Σ is a diagonal matrix
containing the most important singular values of Wold. By updating only the parameters in
U , Σ, and V , LoRA efficiently fine-tunes the model.
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One limitation of LoRA is that it typically applies the same low-rank structure to all lay-
ers, ignoring the varying importance of different layers and parameters for downstream tasks.
Adaptive Low-Rank Adaptation (AdaLoRA) [86] is an improved method based on LoRA,
which adaptively determines which layer parameters need to be updated. By employing adap-
tive learning rates and task-specific parameter adjustment strategies, AdaLoRA enables the
model to automatically adjust the intensity and scope of fine-tuning according to the specific
requirements of the task.

Researchers have also found that LoRA’s continuous pre-training performance is unsatisfac-
tory on some large-scale datasets. Thus, Layerwise Importance Sampled AdamW (LISA) [87]
strategy is proposed, where the weight norm distribution of different layers exhibits uncom-
mon skewness. LISA adopts importance sampling strategy by randomly activating different
layers in the foundation model for optimization. Specifically, LISA consistently updates the
bottom embedding layers and the top linear head while randomly updating a small number
of intermediate self-attention layers. This method, with memory consumption comparable to
LoRA, outperforms LoRA and even full-parameter fine-tuning in various downstream fine-
tuning tasks.

(b) Low-Rank Hadamard Product (LoHa): Low-Rank Hadamard Product (LoHa) [75] up-
dates the model’s weights by introducing the Hadamard product of low-rank matrices. The
principle of LoHa can be represented by the following equation:

Wnew = Wold ⊙∆W , (12)

where Wold is the original weight matrix, and ∆W is the update matrix approximated by
a low-rank matrix. The update matrix ∆W can be further decomposed into the Hadamard
product of two low-rank matrices:

∆W = L1 ⊙ L2. (13)

Here, L1 and L2 are two low-rank matrices that adjust elements of the original weight matrix
by learning key information extracted from the input data. By updating only parameters in
L1 and L2, LoHa achieves efficient fine-tuning of the model while maintaining its adaptability
to new tasks.

(c) Low-Rank Kronecker Product (LoKr): Low-Rank Kronecker Product (LoKr) [76] is
another parameter-efficient fine-tuning method that emerged after LoHa. LoKr utilizes the
properties of the Kronecker product to expand the dimensions of the weight matrix while
keeping the increase in the number of parameters within a manageable range. The Kronecker
product allows the model to learn complex interactions across different dimensions, which is
particularly useful for capturing high-order relationships in the input data. The updating
process of LoKr can be represented as:

Wnew = Wold +∆W , (14)

where ∆W is the Kronecker product of two low-rank matrices L1 and L2:

∆W = L1 ⊗ L2. (15)

In this formula, L1 and L2 are two low-rank matrices, and they compute a large matrix that
is updated during the fine-tuning process through Kronecker product. LoKr is particularly
suitable for tasks that require increasing the model’s dimensions to capture more complex
relationships, while maintaining similar parameter efficiency to LoHa. However, LoKr may
require more complex mathematical operations to handle the Kronecker product, and in some
cases, its computational cost may be higher than that of LoHa.

3. Full fine-tuning: Full fine-tuning is not constrained by pre-training tasks or data distributions,
making it flexible to adapt to various downstream tasks. It allows the model to be directly optimized
end-to-end on the data of the final task without the need for additional adapter modules. However,
because it requires updating all parameters in the model, full fine-tuning demands significant com-
putational resources and longer training times. Moreover, foundation models have a vast number of



Chen H L, et al. 14

parameters, and insufficient fine-tuning data may lead to overfitting. Additionally, the intermediate
variables generated during full fine-tuning consume a large amount of GPU memory. Therefore,
researchers have proposed many parameter-efficient fine-tuning methods mentioned earlier, which
can reduce resource consumption and training time while maintaining performance [77].

3.2 Customization of the foundation model based on pre-trained modules

Foundation models may contain millions or even billions of parameters, and through transfer learning,
it’s possible to reduce parts of the model that need training, thereby significantly lowering training costs.
This approach is known as the customization of the foundation model based on pre-trained modules.
The essence of transfer learning lies in utilizing the knowledge embedded in model parameters during the
pre-training process when constructing a new model. As mentioned earlier, in the architecture of foun-
dation models, there are typically five main modules: modality encoders, backbone calculators, modality
decoders, input projectors, and output projectors. Among them, the modality encoder, backbone cal-
culator, and modality decoder carry a large amount of knowledge as they are directly involved in the
encoding, processing, and decoding of data. In contrast, the input projector and output projector them-
selves carry less model knowledge. In some cases, they may not even have explicit models responsible
for these functions, or these modules are only trained when building new foundation models. Therefore,
when customizing foundation models, we generally do not choose to transfer the input projector and
output projector.

Next, this paper will detail how to customize foundation models based on the pre-trained modality
encoder, backbone calculator, and modality decoder. Through this approach, we can effectively leverage
the knowledge of pre-trained models while reducing the computational resources demand, making the
model more suitable for specific tasks and environments.

3.2.1 Transfer learning based on pre-trained modality encoders

General-purpose foundation models often adapt to the distribution characteristics of a vast dataset during
training, internalizing ample domain knowledge in their model parameters. They are thus well-suited as
feature extraction modules for customized foundation models. By utilizing the pre-trained model’s pre-
existing feature extraction module as the modality encoder for domain data, downstream task modules can
be seamlessly integrated after this module to fulfill task requirements. The modality encoder encapsulates
knowledge about crucial features of the data. There are two main approaches to transfer learning for
obtaining modality encoders:

• Transfer within the same modality across different data domains: This approach involves
transferring the knowledge of the modality encoder trained on the source data domain to the target
data domain. It typically entails aligning the feature distribution of the source and target domain data.
Fine-tuning the pre-trained modality encoder from the source domain on the target domain enables it
to adapt to the characteristics of the new data. Specifically, this can be achieved by adjusting or adding
layers to the encoder. Additionally, domain adaptation techniques such as domain adversarial training or
domain-invariant feature extraction techniques can be employed to reduce the distribution discrepancy
between the source and target domains.

• Transfer across different modalities: When it comes to multi-modality foundation models,
there are often cases that lacking of corresponding pre-trained encoders for certain modalities. In such
situations, a cross-modality transfer strategy can be utilized, adapting encoders of other modalities to
process new data modalities. For instance, the authors of ImageBind treat depth and thermal imaging
data as a form of single-channel images, thereby using image encoders to extract features for thermal
data. Initializing the model with weights pre-trained on image datasets can lead to faster convergence
compared to random initialization and can enhance generalization to some extent.

3.2.2 Transfer learning based on pre-trained backbone calculator

For multi-modality foundation models, the backbone calculator is the core computational component
responsible for processing encoded feature vectors and performing tasks such as classification and gen-
eration. The backbone calculator of customized foundation models can be transferred from pre-trained
models to leverage the complex feature processing and task execution capabilities learned from large-
scale datasets. This approach avoids training the backbone calculator from scratch but still requires
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constructing appropriate previous modules to encode the data into feature vectors that can be processed
by the backbone calculator. For example, NExT-GPT [26] converts raw data from various modalities
into language modality feature vectors before feeding them into a pre-trained LLM, allowing the model to
process inputted tokens according to task requirements. There are two main approaches to transferring
pre-trained backbone calculators:

• Transfer of a single pre-trained backbone calculator: Utilizing a general-purpose foundation
model (e.g., LLaMA) as the backbone calculator to process data from the central modality. When
transferring a pre-trained backbone calculator to a specific domain application, it typically requires fine-
tuning to adapt to specific data characteristics and task requirements of that domain. This step can
be performed on a limited domain dataset, fine-tuning the model parameters to optimize its processing
capabilities for the domain-specific data.

• Modular combination of multiple pre-trained backbone calculators: Modular combination
is a flexible design method in deep learning architectures that allow integrating multiple specialized pre-
trained models into a unified framework based on task requirements. The Mixture of Experts (MoE)
model [88] can serve as an effective mechanism to further optimize this modular combination. The
MoE model introduces multiple expert networks and uses a gating mechanism and mixing strategy to
dynamically select and combine outputs of these experts, enabling specialized processing for different
tasks or data subsets.
The primary function of the gating mechanism is to determine how input data should be distributed
among different experts. It generates a weight or score for each expert based on the characteristics of
the input data, reflecting each expert’s capability or suitability for processing the current input. The
output of the gating mechanism is typically used to guide the mixing strategy, indicating the importance
of each expert for the current input. The mixing strategy then combines the outputs of multiple experts
according to specific rules to generate the final model output. This strategy can be simple, such as
averaging or weighted averaging, or more complex, involving probability distributions of model outputs
or other advanced methods.
For example, for complex tasks requiring both image recognition and language understanding, one expert
network might excel at identifying edges in images, while another expert network might be adept at
understanding semantic relationships in natural language. The gating mechanism of the MoE model can
automatically adjust the participation level of each expert network based on the characteristics of the
input data and the task requirement, which allows the model to flexibly invoke the most appropriate
expert network when dealing with mixed visual and language inputs, achieving optimal performance.
Moreover, MoE models are highly scalable. They can adapt to new task requirements or data types by
adding new expert networks and updating the gating mechanism, making them suitable for constructing
flexible customized foundation models.

3.2.3 Transfer learning based on pre-trained modality decoders

Modality decoders play a crucial role in multi-modality foundation pre-trained models. They are respon-
sible for converting processed feature vectors back into the form of the original data. In generative tasks,
such as converting text to images or audio to text, modality decoders need not only to accurately de-
code the feature vectors to reconstruct understandable original data but also to exhibit a certain level of
creativity. Some pre-trained modality decoders can also understand and process multi-modality feature
inputs. For instance, CoDi-2 can utilize both text and audio as conditions to control image generation.
By transferring such pre-trained decoders, there is no need to train complex decoder structures from
scratch, allowing them to be directly applied to image generation tasks.

Here are methods to effectively utilize pre-trained modality decoders for transfer learning:

1. Fine-tuning pre-trained modality decoders: Similar to modality encoders, modality decoders
can be fine-tuned on a specific task’s dataset to adapt to new task requirements. This process
usually involves adjusting the last few layers of the decoder or adding new layers to better capture
the data characteristics of the specific domain.

2. Transferring cross-modality generative modality decoders: In cross-modality generation
tasks, pre-trained modality decoders can be directly used to generate data in the target modality.
The conditional information is first encoded into feature vectors through a conditional encoder,
and then combined with feature vectors of the original data to achieve conditional generation. The
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prerequisite for this functionality is ensuring that input feature vectors can be correctly understood
by the decoder, which may involve adjustments to the backbone calculator and output projector.

3.3 Construction of the foundation model without pre-trained modules

When it is not possible to construct a foundation model through transferring from pre-trained models, it
becomes necessary to design and train the corresponding modules. We will first provide a general analysis
about the architectures of single-modality and multi-modality foundation models, as the foundation for
constructing each components.

Single-modality foundation models consist of three core modules: the modality encoder, the
backbone calculator, and the modality decoder. For example, in LLaMA-2 [11], the modality encoder
and decoder are specifically designed for the language modality, utilizing the byte pair encoding (BPE)
algorithm for encoding and decoding functions. And the backbone calculator is a massive autoregressive
Transformer model. By this way, LLaMA-2 achieves a complete processing workflow of ”input raw text
– input text feature vectors – output text feature vectors – output raw text”. Additionally, Bai et
al. [13] introduces the concept of visual sentences, and proposes a large visual model (LVM) that can
autoregressively generate the required image based on visual sentences. It realizes in-context learning
within the pure image modality, which enables the model to directly infer tasks from image modality
prompts and generate corresponding results. This not only explores the potential of pure visual input
but also provides a new perspective for constructing domain-specific foundation models — the central
modality does not have to be limited to language but any modality widely used in a specific domain.

Multi-modality foundation models require the additional input projectors and output projectors to
achieve modality alignment. For instance, CoDi-2 [21] first utilizes multiple modality encoders proposed in
ImageBind [25] to process input data, aligning all corresponding modalities to the image modality. Then,
the feature vectors of the image modality are transformed into the feature space of the language modality
through a multi-layer perceptron (MLP). In detail, it uses the pre-trained autoregressive Transformer of
the LLM LLaMA-2-7b-chat-hf as the backbone calculator’s foundation. The image and audio features
processed by the backbone calculator are converted back to the image domain via two MLPs. And they
are then used as control vectors input of a Diffusion-based generative model to obtain the final image
and text results. The training losses include text generation loss, modality conversion loss, and data
generation loss. So that the multi-modality feature processing capability of the backbone calculator and
the modality conversion capability of the two MLPs can be trained at the same time by an end-to-end
way. The model’s modality alignment is reflected in two terms. On one hand, the model aligns the
feature vectors of multiple modalities to the image modality through the pre-trained modality encoders
of ImageBind. On the other hand, it also converts between image feature vectors and text feature vectors
via the MLP.

In summary, constructing a foundation model begins with determining the data modalities and selecting
the central modality. Next, the modality encoder and input projector are implemented to convert raw
data from different modalities into central modality feature vectors, which will then be processed by the
backbone calculator. Following this, output projector and modality decoder are designed to convert the
feature vectors from the backbone calculator back into the original data forms of each modality. Once
the model structure is constructed, the training process can begin. In the following, we will provide a
detailed introduction to the implementation principles and construction methods of each module.

3.3.1 Constructing modality encoders

Constructing a modality encoder means designing a neural network capable of extracting feature vectors
from data. The general steps for building a modality encoder are as follows:

1. Preprocessing into suitable data structures: Choose an appropriate data structure based on
the characteristics of the data modality for subsequent model usage. For example, in audio process-
ing, a common approach is to convert time-domain signals into spectrograms and then use neural
network designed for images to extract features. And another method is to view audio as sequential
vectors and use neural networks for sequence like time series or neural language to process it. When
selecting the target data structure, researchers need to balance task requirements and processing
difficulty, ensuring that the data structure both represents domain knowledge sufficiently and is
suitable for downstream model processing. Additionally, since domain-specific foundation models
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Table 5 Comparison between encoder-only structure, decoder-only structure and encoder-decoder structure

Model Architecture
Generative

Capability

Understanding

Capability
Computation Examples

Encoder-only Low High Low BERT [7]

Decoder-only High Low Low
GPT Series [4–6,22],

LLaMA Series [10,11]

Encoder-decoder High High High BART [15], T5 [16]

need to be functionally versatile, the compatibility of various task inputs should be considered when
choosing the target data structure.

2. Designing the network architecture: Design the network architecture according to the charac-
teristics of the input data structure. For example, Transformer architectures can be used for text
data to capture long-range dependencies, while CNN-based or ViT-based models can be employed
for image data to extract features.

3. Training the modality encoder: Pre-train the modality encoder using a dataset with sufficient
quantity and variety of samples to learn the general features and distributions of the modality data.
Pre-training is the process of infusing the model with knowledge. If the dataset size or diversity
is inadequate, the model might not learn a complete representation of the modality data. One
method to train a modality encoder is to combine the modality encoder and modality decoder into
an autoencoder and perform unsupervised training by minimizing reconstruction error. Another
training method is designing and training a model for a specific task by supervised training, and then
transferring the upstream part of the model as the modality encoder. However, this method cannot
get a compatible modality decoder, which might affect the design and functionality of subsequent
modules. Therefore, when designing the modality encoder, it is essential to consider the consistency
of the entire foundation model architecture.

3.3.2 Constructing input projectors

The role of input projectors is to project data from different modalities into a common feature space.
As discussed in section 2.3, modality alignment can be achieved through either fusion encoders or dual
encoders. When constructing input projectors, the key decision is whether to use a bridging strategy to
integrate input vectors from different modalities or to use a fine-tuning approach to bring the projectors
of different modalities closer together. These two strategies correspond to the concepts of fusion encoders
and dual encoders, respectively. During training, using loss functions from multi-modality understanding
tasks, such as multi-modality classification or generation task losses, can train the model’s cross-modality
projection capability. Additionally, an end-to-end training approach can optimize the overall performance
of the foundation model and train cross-modality projections at the same time. As previously mentioned,
the CoDi-2 model [21] utilizes ImageBind [25] encoders aligned by CLIP as the image and audio modality
encoders and part of the input projector. It then incorporates an MLP as another part of the input
projector. During the end-to-end training process of the foundation model, the MLP is optimized, so as
to align the image and audio to text.

3.3.3 Constructing the backbone calculator

The backbone calculator is responsible for understanding and generating feature vectors of the central
modality. Constructing a backbone calculator for a specific domain begins with identify the most common
and information-rich data modality in that domain as the processed modality by the backbone calculator.
The model architecture is then designed based on this modality. Currently, mainstream model architec-
tures are based on Transformers. A complete Transformer model consists of an encoder and a decoder,
where the encoder analyzes the input data to extract compact feature representations, and the decoder
uses these feature representations to generate the output content. Since the structures of the encoder and
decoder are different, generally, the encoder has stronger comprehension capabilities, while the decoder
has more powerful generative capabilities. Transformer-based foundation model backbone calculators
have three main architectural forms, including encoder-only architectures, decoder-only architectures,
and encoder-decoder architectures. The characteristics of these three architectures are summarized in
Table 5.
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(a) (b)

Figure 7 The workflow of output projector and modality decoder. (a) Generative modality decoder;(b) Discriminative modality

decoder.

1. Backbone processor based on encoder-only architecture: The encoder-only architecture
consists solely of the encoder part of the Transformer. It is typically used for tasks that require
understanding input text rather than generating new text sequences, such as text classification and
sentiment analysis. Due to containing only the encoder part, the encoder model structure is rela-
tively simple but can only produce fixed-length outputs, resulting in limited generation capability.
In terms of generation tasks, backbone processors based on encoder-only model can only handle
tasks such as sequence completion. BERT [7] is a well-known example of an encoder-only model.

2. Backbone processor based on decoder-only architecture: In the decoder-only architecture,
the decoder directly processes the input sequence and generates the output sequence without a
separate encoder to compactly represent the input sequence. This reduces parameter count and
computational overhead but also makes it more challenging for the model to understand input
sequences, thus limiting its ability to handle long sequences. This architecture does not require
explicit context representation when generating output sequences but captures information auto-
matically within the sequence through self-attention mechanisms. Backbone processors based on
decoder-only architecture typically employ autoregressive generation, meaning they generate words
or characters one by one based on previous generated content to complete sequence text generation
tasks. Models like the GPT series [4–6, 22] and the LLaMA series [10, 11] of foundation language
models belong to the decoder-only architecture.

3. Backbone processor based on encoder-decoder architecture: The encoder-decoder archi-
tecture can simultaneously possess the understanding capability of an encoder and the generation
capability of a decoder, but also results in higher parameter count and computational costs. Models
like Meta’s BART [15] and Google’s T5 [16] adopt this architecture.

3.3.4 Constructing output projectors and modality decoders

Modality decoders come in two types: generative and discriminative. Generative modality decoders can
produce high-quality data samples given conditional information. Discriminative modality decoders, on
the other hand, excel in precise reconstruction of data samples based on input vectors. The type of
modality decoders also affects the design of output projectors. Thus it requires a joint consideration of
these two modules. Figure 7 (a) and (b) respectively illustrate the operational processes of generative
and discriminative modality decoders.

1. Generative modality decoder: A generative modality decoder utilizes a generative model as
its neural network, which can control the generation process using conditional information. It
takes other modality features as conditional information and generated data as decoding output.
Such a generative model can be termed as a generative modality decoder, without need of explicit
construction of output projectors. For instance, DiT [50], a diffusion-based image generation model,
can progressively generate images based on previous results and conditional vectors, where cross-
attention mechanisms serve the function of the output projector. Similarly, the VAR model [89]
also uses self-attention mechanism as the output projector function. By incorporating modality
labels in the starting position, VAR knows which content needs to be controlled for generation and
generate images in a autoregressive way.

Generative modality decoders typically employ end-to-end training strategies. During training, the
generation part of the model and the modality interaction part are optimized simultaneously. The
training objective usually involves minimizing the difference between generated data and real data
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while ensuring that generated data meets given conditions. For example, if the model’s objective
is to generate images based on textual descriptions, a large number of text-image pairs are used
during training. And the model is optimized by comparing the similarity between generated images
and real images. This similarity can be measured using pixel-level loss functions (such as mean
squared error) or more advanced perceptual losses (such as VGG loss). Additionally, adversarial
training can be employed to enhance generation quality.

2. Discriminative modality decoder: A discriminative modality decoder is responsible only for
directly reconstructing feature vectors into their original data form. Thus, it requires an explicit
output projector to convert feature vectors from other modalities to the target modality for use.
For example, when using the decoder of VQGAN [48] as the discriminative modality decoder in a
multi-modality foundation model, it is necessary to first explicitly construct an output projector
to transform feature vectors from other modality domains to the image modality, and then use the
decoder portion to decode the feature vectors into their original data form. This explicit output
projector is typically trained using supervised way, where the model takes feature vectors from other
modalities as input and learns to project these features into feature vectors of the target modality
by minimizing the error between the two feature vector. Besides, modality decoders are trained
together with modality encoders as autoencoders, aiming to improve reconstruction performance
by minimizing reconstruction errors.

4 Applications of domain-specific foundation models

Foundation models have emerged as powerful tools with extensive application prospects across various
domains. These foundation models possess the capability not only to handle massive data and complex
tasks but also to bring about new breakthroughs and innovations.

• Telecommunications: Foundation models are expected to be widely applied in sensing, transmis-
sion and network performance optimization, etc. For example, LLM fine-tuned for the telecommunications
domain can be used to process network log data, model and solve specific network problems [44]. Addi-
tionally, foundation models in telecommunications, through the utilization of spatio-temporal correlations
and knowledge reasoning [45], are expected to identify and prevent experience issues caused by degraded
service quality, and delayed fault response times. This lays the foundation for fine-grained network opti-
mization in real-time. In industrial scenarios, the business understanding capability of foundation models
is also expected to help optimize signal transmission and scheduling strategies, improving network effi-
ciency. In research on network foundation models, the NetGPT architecture proposed in the article [90]
is expected to become an effective approach to achieve endogenous intelligence in telecommunications
networks, while the article [91] discusses the challenges and issues that may be encountered in construct-
ing foundation models for telecommunications. The NetLLM proposed in the article [92] adapts LLM
to serve several specific downstream communication tasks. [93] introduces a new memory mechanism to
facilitate the embedding of foundation models into the semantic communication process. By leveraging
the foundation models’ capability to understand and generate multimodal data, it becomes feasible to
propose new and more complex transmission approaches that enhance transmission performance.

• Autonomous driving: Foundation models play a core role in various key aspects such as vehicle
perception, decision-making, and motion control [46]. Specifically, perception tasks in autonomous driving
involve real-time monitoring of the vehicle’s surroundings, including other vehicles, pedestrians, traffic
signs, and road conditions. Foundation models, by analyzing data collected from sensors such as cameras,
radar, and LiDAR (Light Detection and Ranging), can identify various objects and construct detailed
maps of the vehicle’s surroundings. This advanced perception capability is fundamental to achieving safe
autonomous driving. At the decision-making level, foundation models need to make rapid and accurate
judgments based on perceived information, such as avoiding obstacles, selecting appropriate driving paths,
and devising optimal driving strategies in complex traffic situations. Multi-modality foundation models
like DriveGPT [94] can not only process visual data but also understand and respond to language-mode
instructions, such as planning routes based on voice-input destinations. Additionally, pFedLVM [95] can
utilize the powerful performance of pre-trained visual foundation models for image feature extraction,
serving as the basis for down-stream tasks.

• Mathematics: Since many general-purpose LLMs are typically pre-trained on datasets that include
open-source mathematical corpora, they inherently possess some capacity to address mathematical prob-
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lems, and through domain-specific enhancements, this capacity can be significantly improved [38,96–99].
The MAmmoTH proposed in [97] combined chain-of-thought and program-of-thought, fully leveraging
the understanding capability of large language models and the computational power of programming
languages, achieving good performance in mathematical reasoning. [98] indicates through experiments
that the seamless integration of LLMs’ programming and reasoning abilities enables them to progressively
model and solve complex problems.

• Medicine: The applications of foundation models in medicine encompass various aspects, including
disease diagnosis, patient treatment, analysis and prediction of genetic and protein structure data, and
medical education [40, 41, 100–103]. The HuatuoGPT proposed in the article [102] can simulate the
diagnosis and treatment process of doctors, providing preliminary medical consultation and advice for
patients. This model not only reduces the workload of doctors but also enables patients to receive timely
medical services in remote or resource-limited environments. [103] proposes BiomedGPT, which is capable
of performing multimodal medical tasks and has achieved excellent performance in understanding and
generating medical-related content.

• Law: Foundation models can conduct in-depth analysis of legal documents, identify key information
and legal concepts in the text, thereby assisting lawyers and legal advisors in more precise case analysis and
legal consultation [37,104,105]. For example, foundation models can identify clauses in contracts, extract
important legal elements such as obligations, rights and conditions, help lawyers quickly understand
document contents, and identify potential legal risks. Moreover, foundation models can be used for case
logical reasoning, predicting possible outcomes of cases by analyzing historical cases and relevant legal
provisions, providing data support for lawyers to formulate defense strategies. The ChatLaw [106] can
provide real-time legal consultation and answers, helping non-professionals understand complex legal
issues and even generate drafts of legal documents, reducing the workload of lawyers. Additionally,
foundation models can assist in legal research, quickly retrieve relevant legal literature and precedents,
and provide solid evidence for legal arguments.

• Arts: The application of foundation models is exploring and changing the ways of creative expression
and the process of artistic production. By learning from a large number of artworks and creative concepts,
foundation models can generate novel artworks, music, literary works, etc., providing creative inspiration
and support for artists [42]. For example, generative models can be used to produce artworks [107,108],
and fine-tuning techniques can be applied to adjust the style and content of the generated works [109,110].
Currently, in the field of video generation, Sora developed by OpenAI allows users to control generated
content using text, producing lifelike video works. Furthermore, foundation models also show promising
performance in art understanding [111, 112], which provides great potential in the field of art teaching
and study.

• Finance: Foundation models can cover various tasks such as risk modeling, investment strategy
management, market forecasting, etc., providing powerful tools for financial institutions and investors
to optimize decision-making [39, 113]. For example, using foundation models to build credit scoring
systems to assess borrowers’ credit risks. These models analyze factors such as borrowers’ historical
credit records, financial conditions, and debt levels to predict their ability to repay loans, and based on
this, decide whether to approve loan applications and the loan interest rates. Alternatively, foundation
models can be used to consider the historical performance, correlations, risks, and expected returns of
various asset classes, as well as historical market data, macroeconomic indicators, political events, etc., to
make optimal decisions for investors. BloombergGPT, as detailed in [114], was pre-trained on a large-scale
financial dataset, resulting in superior performance across many benchmarks. [115] introduces FinGPT,
an open-source financial LLM, and positions it not only as a model but also as an open-source framework
for Financial LLMs (FinLLMs), which has the potential to fuel innovation among researchers.

5 Future directions

The development of foundation model technology has achieved remarkable progress, but with the con-
tinuous advancement of technology, new challenges and issues arise, pointing out the future research
directions.
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5.1 Challenges in data

Acquiring domain-specific data and modeling data structures are the top priority and most
important challenges. Foundation models typically require vast amounts of high-quality data for train-
ing [116], which may be costly and time-consuming to obtain in specific domains. Moreover, strengthen-
ing privacy regulations impose more restrictions on data collection and usage. To address this challenge,
future research can focus on developing new data collection and annotation techniques, as well as uti-
lizing synthetic data and weakly supervised learning methods to reduce reliance on extensively labeled
data [117, 118]. This not only reduces costs but also effectively utilizes data resources while ensuring
privacy protection. On the other hand, effective modeling of data structures in specific domains re-
quires researchers and practitioners to deeply understand domain-specific business processes, extract key
business data, and establish comprehensive data preprocessing pipelines.

Understanding multi-modality data poses another critical challenge. Although existing foundation
models excel in processing textual data, their understanding of other modalities such as images and sounds
still needs improvement [36], not to mention various new data modalities that may emerge in specific
domains. Constructing unified models capable of comprehensively processing various modalities of data is
essential for enhancing the model’s performance and generalization on multi-modality tasks. This requires
researchers and practitioners to not only deeply understand the characteristics of different modalities of
data but also explore effective multi-modality fusion and interaction understanding mechanisms.

The availability of aligned multi-modality data presents a potential risk for the long-term devel-
opment of multi-modal models. While techniques like bridging alignment can reduce the dependency on
aligned data [20, 25], the performance and generalization capabilities of multi-modal foundation models
still heavily rely on annotated data. This data is costly in terms of both time and financial resources.
Therefore, new alignment methods are necessary to address these challenges [53].

5.2 Challenges in model architecture

In the architectural design of foundation models in specific domains, a core challenge is how to build
models that can effectively capture and express deep semantic information specific to different
domain [20, 25, 26]. This requires models to not only have a broad knowledge base but also understand
and adapt to domain-specific knowledge and input modalities. Foundation models tailored for specific
domains need to achieve high modularity and customizability in architecture, enabling adjustment
and optimization according to specific application scenarios to adapt to the data characteristics and task
requirements of different domains [4, 7, 16]. Furthermore, interpretability of models is particularly im-
portant in specific domains. When designing architectures, researchers need to consider how to construct
models so that their decision-making processes and output results can be understood and trusted by
domain experts and end-users. This may involve developing new model mechanisms, introducing inter-
pretable model intermediate representations, or designing visualization tools to demonstrate the internal
workings of the model.

5.3 Challenges in computational resources

Computational resources are also a significant challenge for foundation model technology. Training and
running foundation models require enormous computational resources, which not only increases economic
costs but also may have environmental impacts. Therefore, researching how to improve the efficiency
of model training and inference [119] and how to reduce energy consumption has become an
urgent issue. Future research directions may include developing more efficient model compression and
acceleration techniques, such as knowledge distillation, model pruning, quantization, etc., as well as
exploring more efficient training algorithms and specialized hardware designs.

Lightweight deployment is another important direction for foundation model technology. The
size and computational requirements of foundation models often make it difficult to deploy them in
mobile devices and edge computational scenarios [120]. To enable foundation models to run in resource-
constrained scenarios, lightweight model architectures and deployment strategies need to be developed.
This may involve simplifying, distilling, and optimizing models to reduce their size and computational
requirements while maintaining or improving their performance. Alternatively, employing cloud-edge
collaboration strategies can distribute the training and inference processes of foundation models across
various server tiers, enabling a cooperative deployment. In cloud-edge learning, it is essential to consider
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the joint optimization of sensing, computation, and communication [121–123]. Such joint optimization
for the performance of neural networks and resource consumption holds vast potential for innovation in
research and can generate significant value in practical application scenarios.

5.4 Challenges in security

Security issues are also challenges that foundation model technology must face. Foundation models may
be used to generate false information, infringe on privacy, or be maliciously exploited, and the models
themselves may also be subject to adversarial attacks [124]. To ensure the security and reliability of
models, relevant work includes but is not limited to the following key points: Firstly, strengthening
the robustness of models to resist potential adversarial attacks [125]. This may involve developing
advanced adversarial training techniques and implementing more stringent data cleaning and prepro-
cessing steps. Secondly, developing and deploying efficient malicious input detection mechanisms,
using anomaly detection algorithms and real-time monitoring systems to identify and prevent malicious
behavior. Furthermore, ensuring privacy protection is achieved by diminishing the model’s reliance
on sensitive data, thereby safeguarding the security and privacy of user information [126]. In addition
to technical efforts, enhancing security in workflow and policy aspects is also necessary. For ex-
ample, implementing security audit and certification processes to comprehensively assess the security of
models and ensure that model development and deployment comply with ethical and legal standards,
continuously updating security policies to address emerging security threats and challenges.
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