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Background: What is Wireless Sensing?

❑ Definition: Wireless sensing is a method for collecting and transmitting data through wireless
networks, primarily used to monitor the state of environments, objects, or systems.

❑ Typical Wireless Signals:
- Wi-Fi (*our research focus)
- Bluetooth
- LoRa

❑ Sensing Types:
- Active sensing: Sensors actively emit signals or stimuli to gather information about the
environment or objects.

- Passive sensing: Sensors passively receive signals or information that naturally exist in the
environment without actively emitting signals. (*our research focus)

(a) Wi-Fi sensing (b) Bluetooth sensing (c) LoRa sensing

Figure 1: Three typical wireless sensing technologies
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Background: Why We Need Wi-Fi Sensing?

❑ Benefits
- High privacy
- High penetration
- Extensive coverage: effective even in Non-Line-of-Sight (NLOS) situations
- Low cost

Figure 2: Comparison of Wi-Fi with other sensing technologies
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Background: Why We Need Wi-Fi Sensing?

❑ Benefits
- High privacy
- High penetration
- Extensive coverage: effective even in Non-Line-of-Sight (NLOS) situations
- Low cost

Figure 3: Potential application scenarios of Wi-Fi sensing
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Background: How to Realize Wi-Fi Sensing?

❑ Common Wi-Fi Sensing Features

- Received Signal Strength Indicator (RSSI): A measure of the power level that a receiver
detects, indicating the strength of the received signal.

- Channel State Information (CSI): A detailed representation of the wireless channel’s
characteristics, including amplitude and phase information. This allows for advanced signal
processing techniques.

❑ CSI Estimation
Y = HX + N

- Y: received signals; X: transmitted signals
- H: channel matrix; N: noise signals

❑ CSI Components
H(f , t) = Hs(f , t) + Hd(f , t)

- Hs: static component; Hd: dynamic component
- f : subcarrier frequency; t: time-domain sampling point
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Background: How to Realize Wi-Fi Sensing?

❑ Wi-Fi Sensing Principle
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Background: How to Realize Wi-Fi Sensing?

❑ General Wi-Fi Sensing Framework

Figure 4: Workflow of learning-based Wi-Fi sensing system (Chen et al. 2024)
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Background: Current Situation of Wi-Fi Sensing

❑ Wi-Fi Sensing Important Moments
- 2008: Research on Wi-Fi sensing began to emerge, based on the 802.11n protocol.
- 2019: IEEE initiated formal discussions on Wi-Fi sensing.
- 2025: The first Wi-Fi sensing protocol (802.11bf) is expected to be approved, further
advancing Wi-Fi technology.

Figure 5: Development of Wi-Fi protocol
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Main Challenges & Research Gaps

Three Major Challenges of Wi-Fi Sensing:
1. Signal Characteristics Easily Drowned: Various factors can lead to signal loss, which negatively

impacts the performance of sensing models.
2. Weak Generalization of Sensing Models: The accuracy of sensing models is highly dependent on

specific environmental conditions.
3. Difficulties in Data Collection: There are numerous diverse scenarios, and the costs associated with

data collection are often high.
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Research Objectives

Research Objectives

(1) To develop package recovery method tailored to the structure of CSI signals.

(2) To develop method and theoretical framework for general and practical cross-domain Wi-Fi sensing.

(3) To develop easy and cost-effective method for rapid Wi-Fi sensing data.

Figure 6: Smart spaces via Wi-Fi sensing
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Outline

1 Research Overview

2 CSI-BERT: A Multifunctional Framework for CSI Time Series

3 KNN-MMD: An Effective Framework for Practical Cross-Domain Wi-Fi Sensing

4 CrossFi: A Multi-scenario Framework for Cross-Domain Wi-Fi Sensing

5 LoFi: IoT-Enabled Wi-Fi Sensing Deployment

6 Concluding Remarks
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Background: Package Loss

❑ Factors Causing Package Loss
- Environment noise
- Frequency interference
- Hardware errors
- . . .

❑ Influence of Package Loss
- Incomplete CSI data → Affects model performance!

Figure 7: Impact of package loss
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Motivation: Mask Language Model (MLM) of BERT

❑ Mask Language Model (MLM)
- Original sentence: “Wi-Fi sensing is one of the important technologies in ISAC.”
- Random MASK: “Wi-Fi [MASK] is one of the [MASK] technologies in ISAC.”
- Recovered sentence: “Wi-Fi sensing is one of the popular technologies in ISAC.”

❑ Why Using MLM for CSI Recovery?
- The task of recovering lost packets is analogous to MLM.
- MLM does not require labeled data. → Enable training with unlabeled and incomplete CSI
sequences!

subcarrier

Packet index

CSIBERT

TxRx

Data collection

Gesture 
Recognition

Human
Identification

subcarrier

Packet index

Figure 8: Principle of CSI-BERT
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Exiting Works: BERT for Wi-Fi Sensing

❑ Previous Works
- BERT for radio map construction (Wang et al. 2023)
- BERT for indoor localization (Guo et al. 2022; Sun et al. 2021)

❑ Shortcomings of Previous Works
- Converting continuous signal data into discrete tokens → information loss.
- Applying BERT from NLP directly without any adaptation design → low performance.

(a) Model structure (b) Tokenization approach

Figure 9: Method proposed in Sun et al. 2021
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Model Structure

❑ Main Design

- CSI Embedding Layer with
Standardization Mechanism

Std(xi) =
xi − µi

σi
De-Std(yi) = (yi +µi) ∗σi

- x: input; y: output
- µ: mean; σ: standard deviation

- Time Embedding Layer: Positional
Embedding Style

- Discriminator

min
R

max
D

Ex[log(D(x))]+Ex[log(1−D(R(x)))]

- R: Recoverer; D: Discriminator Figure 10: Architecture of CSI-BERT

1Zijian Zhao, Tingwei Chen, Fanyi Meng, Hang Li, Xiaoyang Li, Guangxu Zhu*, “Finding the Missing Data: A BERT-inspired Approach
Against Package Loss in Wireless Sensing” (2024 IEEE International Conference on Computer Communications (INFOCOM) DeepWireless
Workshop)

2Zijian Zhao, Kaifeng Han, Qimei Chen, Guangxu Zhu, Xiaoyang Li, Hang Li, “Channel State Information Recovery Method and
Apparatus, Equipment, Storage Medium” (Patent Number: ZL2024102321250, 2024)
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Workflow

❑ Unsupervised Training
- Replace CSI with [MASK] ∼ N(µ, σ2) randomly
- Train the model to recover the CSI sequence

❑ Inference
- Fill in the blank positions with [MASK]s and infer them using the trained CSI-BERT
- Two recovery methods: Recover & Replace

(a) Unsupervised training (b) Inference (recovery task)

Figure 11: Workflow of CSI-BERT
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Experiment Setup

❑ Dataset: WiGesture
- 60-minute dataset used for gesture recognition and people identification
- collected using ESP32-S3 (1 antenna, 52 subcarriers)
- 6 actions & 8 volunteers

Figure 12: Gesture sketch map of WiGesture dataset
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Experiment Result

❑ Experiment Result
- CSI-BERT achieves the lowest recovery error and provides the greatest improvement to
classification models.

- However, CSI-BERT performs worse than ResNet in sensing tasks.

Method MSE ↓ MAE ↓ SMAPE ↓ MAPE ↓ FSS ↑ Time Cost (min) ↓
CSI-BERT 1.7326 0.9413 0.0902 0.0945 0.9999 (replace), 0.9979 (recover) 0.03

Linear Interpolation 2.8294 1.2668 0.1248 0.1344 0.9841 0.64
Ordinary Kringing 3.6067 1.4371 0.1627 0.1395 0.9936 45.15

IDW 2.4306 1.1854 0.1278 0.1167 0.9970 3.30

Table 1: CSI recovery error

Task Action Classification People Identification

Data
Model MLP CNN RNN LSTM ResNet CSI-BERT MLP CNN RNN LSTM ResNet CSI-BERT

337K 23K 33K 133K 11M 2M 337K 23K 33K 133K 11M 2M
Original Data 66.93% 55.72% 39.56% 11.97% 70.31% 76.91% 71.34% 71.14% 66.39% 21.09% 83.76% 93.94%

CSI-BERT recover 74.23% 59.39% 48.96% 22.92% 92.57% 71.87% 97.13% 80.60% 80.51% 35.18% 94.30% 95.05%
CSI-BERT replace 86.90% 61.51% 58.80% 52.36% 84.52% 79.54% 97.65% 79.18% 89.24% 24.22% 97.39% 95.83%
Linear Interpolation 72.91% 58.35% 45.32% 49.09% 80.75% 74.55% 81.84% 70.88% 84.45% 26.83% 86.75% 97.92%
Ordinary Kringing 65.62% 57.55% 53.64% 50.00% 88.71% 74.27% 94.76% 85.38% 86.42% 21.61% 97.32% 95.83%

IDW 40.17% 56.77% 48.70% 46.88% 80.32% 67.22% 83.22% 74.56% 88.54% 33.91% 94.27% 95.20%

Table 2: CSI sensing classification performance
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Second-Generation Model Structure

❑ Shortcomings of CSI-BERT1

- Limited capacity to capture the
relationship between subcarriers

- Permutation invariance of the positional
embedding-based time embedding layer

❑ Main Design

- Adaptive Re-Weighting Layer (ARL)

ARL(x) = x ·MLP(x)

- MLP(x): adaptive weight
- ·: dot product

- MLP-based Time Embedding Layer Figure 13: Architecture of CSI-BERT2

1Zijian Zhao, Fanyi Meng, Hang Li, Xiaoyang Li, Guangxu Zhu*, “CSI-BERT2: A BERT-Inspired Framework for Efficient CSI Prediction
and Recognition in Wireless Communication and Sensing” (under review)

2Tingwei Chen, Yantao Wang, Hanzhi Chen, Zijian Zhao, Xinhao Li, Nicola Piovesan, Guangxu Zhu*, Qingjiang Shi, “Modelling the 5G
Energy Consumption using Real-world Data: Energy Fingerprint is All You Need” (under review, IEEE Wireless Communications Letters
(WCL))
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Other Application Scenarios

❑ CSI Sensing Task under Various Sampling Rates
- In practice, data from different users or scenarios may be heterogeneous.

❑ CSI Prediction Task
- In wireless communication, estimating the CSI matrix is challenging and time-consuming.
Longer CSI estimation times lead to reduced valid communication time.

(a) CSI Sensing Task (b) CSI Prediction Task

Figure 14: Application scenarios of CSI-BERT2
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Workflow

❑ Unsupervised Pre-training

❑ Supervised Fine-tuning

- Sensing task: Mask Fine-tuning
- Prediction task: Mask
Prediction Model (MLM)

❑ Inference

Figure 15: Workflow of CSI-BERT2
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Experiment Setup

❑ Dataset 1: WiFall
- 45-minute dataset used for fall detection, action recognition, and people identification
- 5 actions & 10 volunteers

❑ Dataset 2: WiCount
- 15-minute dataset used for estimating the number of people
- 0 ∼ 4 people

(a) Hardware (b) Sketch map

Figure 16: WiFall dataset
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Experiment Result

❑ CSI Recovery Task
- CSI-BERT2 significantly outperforms CSI-BERT1 in both recovery and sensing tasks.

Dataset WiGesture WiFall WiCount

Method
Metric

MSE SMAPE MAPE Time(s) MSE SMAPE MAPE Time(s) MSE SMAPE MAPE Time(s)

CSI-BERT2 2.0800 0.1153 0.1217 5.53 4.1463 0.1240 0.1351 2.77 2.4531 0.1092 0.1189 1.56
CSI-BERT 2.2438 0.1156 0.1244 1.84 4.4042 0.1271 0.1373 1.32 2.4471 0.1092 0.1185 0.67

Linear Interpolation 2.8642 0.1266 0.1364 38.49 6.4420 0.1461 0.1571 2.81 2.6870 0.1099 0.1175 1.20
Ordinary Kringing 3.5090 0.1390 0.1612 2709.43 4.6637 0.1319 0.1462 289.09 4.5964 0.1423 0.1684 109.10

Inverse Distance Weighted (IDW) 2.4726 0.1187 0.1301 19.82 4.4251 0.1276 0.1409 2.45 3.4431 0.1268 0.1483 0.82

Table 3: Recovery error

Task People Number Estimation (WiCount Dataset)

Data
Model MLP CNN RNN LSTM Chen et al. WiGRUNT CSI-BERT CSI-BERT2

Average
337K 23K 33K 133K 11M 11M 2M 5M

Original Data 56.77% 69.68% 80.93% 80.72% 48.33% 49.53% 89.67% 94.32% 71.24%
CSI-BERT2 recover 87.29% 78.75% 83.98% 81.51% 83.32% 85.42% 84.06% 91.32% 84.45%
CSI-BERT2 replace 85.62% 78.49% 88.12% 86.97% 81.41% 82.34% 81.51% 92.76% 84.65%
CSI-BERT recover 88.98% 80.83% 86.20% 82.39% 82.22% 82.70% 79.04% 92.70% 84.38%
CSI-BERT replace 81.61% 72.60% 85.67% 84.95% 85.62% 82.75% 81.61% 92.86% 83.46%
Linear Interpolation 76.51% 77.73% 85.52% 82.40% 80.17% 83.07% 86.51% 88.64% 82.57%
Ordinary Kringing 87.29% 50.52% 84.84% 85.05% 82.97% 76.72% 85.72% 91.90% 80.63%

IDW 80.72% 82.29% 84.17% 87.00% 82.10% 81.72% 85.62% 88.54% 84.02%

Table 4: CSI classification performance in WiCount dataset
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Experiment Result

❑ CSI Recovery Task

Task Gesture Recognition (WiGesture Dataset)

Data
Model MLP CNN RNN LSTM Chen et al. WiGRUNT CSI-BERT CSI-BERT2

Average
337K 23K 33K 133K 11M 11M 2M 5M

Original Data 66.93% 55.72% 39.56% 11.97% 70.31% 48.73% 76.91% 99.48% 58.70%
CSI-BERT2 recover 72.88% 57.27% 54.34% 48.35% 92.96% 78.97% 92.18% 89.06% 73.25%
CSI-BERT2 replace 73.68% 62.80% 55.48% 40.79% 91.92% 74.99% 81.51% 91.95% 71.63%
CSI-BERT recover 74.23% 59.39% 48.96% 22.92% 92.57% 71.87% 71.87% 92.70% 66.81%
CSI-BERT replace 86.90% 61.51% 58.80% 52.36% 84.52% 78.84% 79.54% 91.41% 74.24%
Linear Interpolation 72.91% 58.35% 45.32% 49.09% 80.75% 74.91% 74.55% 88.25% 68.01%
Ordinary Kringing 65.62% 57.55% 53.64% 50.00% 88.71% 69.99% 74.27% 85.93% 68.21%

IDW 40.17% 56.77% 48.70% 46.88% 80.32% 71.06% 67.22% 88.28% 62.42%

Task People Identification (WiGesture Dataset)
Model MLP CNN RNN LSTM Chen et al. WiGRUNT CSI-BERT CSI-BERT2 Average

Original Data 71.34% 71.14% 66.39% 21.09% 83.76% 72.07% 93.94% 99.73% 72.43%
CSI-BERT2 recover 95.57% 85.54% 84.60% 27.98% 93.20% 81.73% 97.92% 99.73% 83.28%
CSI-BERT2 replace 95.05% 83.07% 84.68% 54.13% 95.33% 83.84% 96.35% 94.79% 85.91%
CSI-BERT recover 97.13% 80.60% 80.51% 35.18% 94.30% 84.67% 95.05% 99.73% 83.39%
CSI-BERT replace 97.65% 79.18% 89.24% 24.22% 97.39% 77.77% 95.83% 99.47% 82.59%
Linear Interpolation 81.84% 70.88% 84.45% 26.83% 86.75% 70.28% 97.92% 91.67% 76.33%
Ordinary Kringing 94.76% 85.38% 86.42% 21.61% 97.32% 80.84% 95.83% 99.03% 82.64%

IDW 83.22% 74.56% 88.54% 33.91% 94.27% 80.70% 95.20% 99.47% 81.23%

Table 5: CSI classification performance in WiGesture dataset
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Experiment Result

❑ CSI Recovery Task

Task Action Recognition (WiFall Dataset)

Data
Model MLP CNN RNN LSTM Chen et al. WiGRUNT CSI-BERT CSI-BERT2

Average
337K 23K 33K 133K 11M 11M 2M 5M

Original Data 47.48% 56.27% 58.61% 52.10% 51.38% 34.44% 82.43% 88.59% 58.91%
CSI-BERT2 recover 64.97% 67.18% 68.48% 62.63% 71.70% 70.96% 67.63% 72.16% 68.21%
CSI-BERT2 replace 69.01% 66.27% 70.18% 61.99% 73.96% 69.72% 66.77% 72.70% 68.82%
CSI-BERT recover 66.40% 54.94% 68.48% 61.79% 69.66% 70.94% 67.36% 73.69% 66.65%
CSI-BERT replace 73.05% 54.97% 66.79% 66.73% 72.01% 67.44% 66.61% 73.67% 67.65%
Linear Interpolation 67.44% 64.32% 67.31% 59.78% 74.22% 70.57% 64.37% 74.19% 67.77%
Ordinary Kringing 67.96% 65.52% 64.44% 63.88% 70.92% 62.41% 67.36% 71.77% 66.78%

IDW 70.31% 67.08% 69.79% 62.32% 71.09% 72.39% 67.22% 70.21% 68.80%

Task Fall Detection (WiFall Dataset)
Model MLP CNN RNN LSTM Chen et al. WiGRUNT CSI-BERT CSI-BERT2 Average

Original Data 78.34% 52.99% 82.29% 80.35% 78.52% 73.69% 93.28% 94.79% 79.28%
CSI-BERT2 recover 80.79% 75.95% 86.58% 86.72% 82.42% 80.90% 82.25% 86.97% 82.82%
CSI-BERT2 replace 79.82% 74.89% 83.07% 86.31% 82.16% 78.65% 80.62% 85.38% 81.36%
CSI-BERT recover 80.98% 75.27% 84.37% 80.41% 81.38% 83.07% 81.32% 84.92% 81.46%
CSI-BERT replace 80.21% 74.94% 83.46% 84.37% 82.33% 80.79% 83.33% 85.72% 81.89%
Linear Interpolation 81.78% 75.78% 84.50% 84.33% 78.51% 78.77% 81.35% 84.39% 81.17%
Ordinary Kringing 81.64% 75.78% 80.98% 82.29% 82.00% 79.03% 82.31% 84.49% 81.07%

IDW 82.55% 54.94% 83.59% 80.59% 78.21% 80.72% 81.72% 84.06% 78.29%

Table 6: CSI classification performance in WiFall dataset
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Experiment Result

❑ CSI Prediction Task

- CSI-BERT2 outperforms other CSI prediction models across all datasets.

Dataset WiGesture WiFall WiCount

Method
Metric

MSE SMAPE MAPE Time(s) MSE SMAPE MAPE Time(s) MSE SMAPE MAPE Time(s)

CSI-BERT2 (5M) 3.2942 0.1583 0.1349 0.46 4.8598 0.1471 0.1347 0.49 5.3401 0.1726 0.1590 0.46
LSTM (133K) 12.3254 0.2397 0.3967 0.05 7.1495 0.1624 0.1882 0.04 32.3377 0.2547 0.3528 0.05
RNN (33K) 19.4708 0.2877 0.4063 0.04 16.9083 0.2424 0.2988 0.04 32.3670 0.2548 0.3534 0.03
GRU (100K) 19.7180 0.2922 0.4243 0.04 16.5353 0.2395 0.2963 0.07 39.8108 0.2541 0.3556 0.02
Mamba (5M) 12.3281 0.2392 0.3277 0.24 6.4666 0.1532 0.1756 0.12 39.9170 0.2566 0.3524 0.11

OCEAN (126K) 19.6257 0.2925 0.4231 0.05 16.8825 0.2423 0.2978 0.03 39.7917 0.2542 0.3548 0.02
CV-3DCNN (19K) 11.3017 0.2267 0.3044 0.04 8.2616 0.1713 0.1981 0.03 42.2662 0.2631 0.3560 0.02
ConvLSTM (152K) 19.7038 0.2921 0.4242 0.04 16.8935 0.2429 0.2983 0.03 39.7709 0.2537 0.3552 0.02

Table 7: CSI prediction error
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Experiment Result

❑ CSI Classification Task

- With the aid of time embedding, CSI-BERT2 can simultaneously process CSI data at different
sampling rates.

Data Training Set: 100Hz+50Hz; Testing Set: 100Hz+50Hz
Model MLP CNN RNN LSTM Chen et al. WiGRUNT CSI-BERT CSI-BERT2

Gesture Recognition 16.51% 14.54% 15.13% 17.37% 16.59% 74.47% 64.61% 97.04%
People Identification 13.47% 15.52% 13.41% 13.47% 13.72% 81.25% 70.83% 99.54%
Action Recognition 70.97% 67.67% 70.02% 59.63% 75.18% 66.78% 78.18% 88.35%

Fall Detection 81.10% 75.80% 83.92% 84.83% 85.98% 80.72% 92.98% 93.64%
People Number Estimation 84.03% 46.82% 81.25% 82.00% 80.09% 76.13% 86.93% 92.54%

Data Training Set: 100Hz; Testing Set: 50Hz
Model MLP CNN RNN LSTM Chen et al. WiGRUNT CSI-BERT CSI-BERT2

Gesture Recognition 69.79% 20.38% 36.25% 27.15% 74.89% 71.37% 79.96% 97.81%
People Identification 87.29% 11.85% 82.29% 22.32% 87.22% 85.24% 94.44% 99.38%
Action Recognition 68.97% 51.96% 68.07% 60.26% 76.56% 73.21% 84.56% 88.53%

Fall Detection 80.83% 76.13% 80.17% 84.38% 78.61% 77.08% 94.19% 94.32%
People Number Estimation 82.22% 77.03% 84.43% 42.22% 68.89% 71.11% 89.10% 94.77%

Table 8: CSI classification performance under different sampling rate
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Ablation Study

❑ Effect of Pre-training

w/ Pre-training w/o Pre-training
Dataset MSE SMAPE MAPE MSE SMAPE MAPE

WiGesture CSI-BERT 3.2942 0.1583 0.1349 5.3054 0.1962 0.1657
WiFall KNN-MMD 4.8598 0.1471 0.1347 5.0957 0.1595 0.1413

WiCount 5.4301 0.1726 0.1590 6.6868 0.2019 0.1659

Table 9: CSI-BERT2 performance in CSI prediction task

Figure 17: CSI-BERT2 performance in CSI classification task
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Ablation Study

❑ Effect of Modulation to BERT Structure

- The original BERT fails to capture any useful information from CSI, assigning the same value
to all positions of the CSI, although it can result in a relatively low loss function value.

(a) CSI recovery result (b) Attention map

Figure 18: Comparison between CSI-BERT and Original BERT
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Background: Cross-Domain Task

❑ Definition
- Source Domain: The original domain where the model is trained, containing a significant
amount of labeled data that helps the model learn to make predictions.

- Target Domain: The new domain where the model needs to perform, which may have different
characteristics and possibly limited or no labeled data.

❑ Influence of Domain Shift
- Failure to extract features from the target domain → Low Model Performance!

(a) t-SNE of WiGesture dataset (b) Influence of domain shift

Figure 19: Cross Domain Challenge
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Background: Current Methods

❑ Domain Adaptation (DA) Methods

- Metric-based Methods: Utilize distance metrics such as Gaussian distance and cosine similarity.
- Domain Alignment Methods: Focus on aligning the distributions of the source and target
domains.

- Learning-based Methods: Include techniques like comparative learning and representation
learning.

Metric-based Method Learning-based Method Domain Alignment Method Ours
Representative Methods KNN, K-means Siamese, Triplet Network MMD, GFK KNN-MMD

Sensitivity to Quality of Support Set High Moderate None Low
Stability Low Low Low High

Assumption Pt(y|x) = Ps(y|x) No Some methods require it Yes No

Table 10: Comparison of Different DA Methods
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Preliminary: Domain Alignment (DAL)

❑ Target: Make the network θ learned in the source domain xs work in the target domain xt.

θ = arg max
θ

P(ys|xs; θ)

- xs, ys: input and ground truth from the source domain
- xt, yt: input and ground truth from the target domain

❑ Challenge: Due to the significant domain gap (P(xs) ̸= P(xt)), θ often has low performance in
the target domain.

❑ DAL Solution: Find a feature space F() such that P(F(xs)) ≈ P(F(xt)). (i.e., align the
distributions of the source and target domains in feature space)
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Preliminary: Domain Alignment (DAL)

❑ Limitation: Does DAL really work?

Ps(y|F(x)) = Pt(y|F(x))
Ps(F(x)|y)Ps(y)

Ps(F(x))
Pt(F(x))

Pt(F(x)|y)Pt(y)

= Pt(y|F(x))
Pt(F(x))
Ps(F(x))

Ps(F(x)|y)
Pt(F(x)|y)

Ps(y)
Pt(y)

= Pt(y|F(x))
∑y′ Pt(y′)Pt(F(x)|y′)
∑y′ Ps(y′)Ps(F(x)|y′)

Ps(F(x)|y)
Pt(F(x)|y)

Ps(y)
Pt(y)

The learned θ actually satisfies: P(y|F(x); θ) ≈ Ps(y|F(x)). Therefore, if we want θ to work in the
target domain, we should ensure that Ps(y|F(x)) ≈ Pt(y|F(x)).
This implies that what we need to align is P(F(x)|y), not just P(F(x)). (the proposed local alignment)
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Preliminary: K-Nearest Neighbors (KNN)

❑ Basic Idea: Classify according to the distance to each sample in the Support Set (a very small
number of labeled samples in the target domain).

❑ Advantage: Easy & Fast & Interpretability (We can measure confidence based on the distance
between the testing sample and the support samples.)

❑ Shortcoming: Accuracy is highly influenced by the quality of the support set.

KNN KNN-MMD
d=32 d=64 d=128 d=32 d=64 d=128

n=1, k=1 49%-83% 49%-69% 51%-83% 85%-95% 83%-93% 72%-93%
n=2, k=1 72%-92% 79%-89% 65%-96% 79%-94% 87%-93% 80%-91%
n=2, k=2 65%-76% 58%-82% 49%-83% 88%-95% 84%-92% 88%-91%
n=3, k=1 78%-94% 74%-93% 91%-97% 88%-95% 87%-95% 89%-92%
n=3, k=2 74%-94% 68%-97% 77%-82% 87%-93% 87%-91% 84%-92%
n=3, k=3 64%-93% 68%-94% 74%-91% 91%-96% 86%-90% 90%-94%
n=4, k=1 83%-97% 77%-97% 78%-97% 92%-96% 88%-92% 90%-93%
n=4, k=2 91%-96% 92%-97% 80%-95% 94%-98% 91%-94% 91%-96%
n=4, k=3 77%-97% 73%-97% 82%-92% 85%-93% 89%-93% 90%-94%
n=4, k=4 80%-95% 59%-88% 59%-97% 87%-94% 90%-94% 88%-95%

Table 11: Performance of KNN and KNN-MMD: n denotes the number of shots, k denotes the number of neighbors in KNN, and d denotes
the data dimension after reduction using UMAP.
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Motivation

The DAL method can achieve high-quality alignment, but we notice that global alignment has low
performance guarantees. KNN offers high interpretability but suffers from significant instability. Can we
combine the benefits of both?

❑ Scenario Setup:

- Training Set: Lots of labeled samples from source domain.
- Support Set: n labeled sample within each category from target domain.
- Testing Set: Lots of unlabeled samples from target domain. (available during training)

❑ Idea:

- First, construct a Help Set (samples with pseudo labels in the target domain) using KNN
(based on Support Set (labeled samples in the target domain)).

- Then, achieve local alignment within each category based on the Training Set (source domain)
and the Help Set using Multi Kernel Maximum Mean Discrepancy (MK-MMD).
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Preliminary: MK-MMD

❑ MMD: A metric to measure the distance between two distributions.

❑ MK-MMD: A practical method to approximate MMD.

MMD[F, p, q] := supf∈F|Ep[f (x)]− Eq[f (x)]|

MK-MMD2[K, p, q] :=
H

∑
h=1

βh

[
1
n2

n

∑
i=1

n

∑
j=1

Kh(x
(p)
i , x(p)j )

− 2
nm

n

∑
i=1

m

∑
j=1

Kh(x
(p)
i , x(q)j ) +

1
m2

m

∑
i=1

m

∑
j=1

Kh(x
(q)
i , x(q)j )

]
- F: the set of all mapping functions in the Reproducing Kernel Hilbert Space (RKHS).

- p, q: two data distributions.

- K: a set of kernel functions.

- n, m: the amounts of data in the two distributions.

- β: a set of weights.
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Method Framework

Figure 20: Workflow of KNN-MMD

1Zijian Zhao, Zhijie Cai, Tingwei Chen, Xiaoyang Li, Hang Li, Qimei Chen, Guangxu Zhu*, “Does MMD Really Align? A Cross Domain
Wireless Sensing Method via Local Distribution” (under review, 2025 IEEE/CIC International Conference on Communications in China
(ICCC))

2Zijian Zhao, Zhijie Cai, Tingwei Chen, Xiaoyang Li, Hang Li, Qimei Chen, Guangxu Zhu*, “KNN-MMD: Cross Domain Wireless
Sensing via Local Distribution Alignment” (under review, IEEE Transactions on Mobile Computing (TMC))

3Zijian Zhao, Guangxu Zhu, Qimei Chen, Kaifeng Han, “Method for Object Recognition Using Model Based on Few-Shot Learning and
Related Equipment” (Patent Number: ZL202411074110, 2024)
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Network Structure

❑ Feature Extractor: ResNet-18

❑ Classifier: MLP

Figure 21: Network architecture
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Experiment Setup

❑ Cross-domain Setting:
Task Training Set Support Set Testing Set

Gesture Recognition People ID 1-7 n samples for each gesture in People ID 0 samples excluding support set in People ID 0
People Identification Action ID 1-5 n samples for each person in Action ID 0 samples excluding support set in Action ID 0

Fall Detection & Action Recognition People ID 1-9 n samples for each action in People ID 0 samples excluding support set in People ID 0

Table 12: n-shot scenario description

❑ Ablation Study Setting: Directly use the help set to fine-tune the trained network on the training
set (source domain).
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Experiment Result

❑ One/Zero-shot Comparison:

Method Scenario Gesture Recognition People Identification Fall Detection Action Recognition Average Accuracy

Resnet18
in-domain 80.75% 86.75% 91.88% 70.50% 82.47%
zero-shot 40.84% 70.50% 59.86% 26.00% 49.30%

Siamese one-shot 70.40% 82.87% 60.62% 38.95% 63.21%
AutoFi (MLP-based) one-shot 24.62% 24.71% 50.88% 23.59% 30.95%
AutoFi (CNN-based) one-shot 27.05% 36.14% 48.05% 26.95% 34.55%

Yang et al. one-shot 67.21% 74.22% 59.75% 48.52% 62.43%
Ding et al. one-shot 39.14% 70.94% 61.56% 30.37% 50.50%
CrossFi one-shot 91.72% 93.01% 80.93% 49.62% 78.82%
KNN one-shot 83.02% 82.67% 49.63% 46.87% 65.55%

KNN-MMD (Ours) one-shot 93.26% 81.84% 77.62% 75.30% 82.01%
Ablation Study one-shot 69.87% 73.78% 84.03% 74.06% 75.44%

MMD zero-shot 47.92% 67.25% 74.32% 45.61% 58.75%
MK-MMD zero-shot 40.36% 66.47% 72.26% 43.72% 55.70%
DANN zero-shot 41.41% 67.18% 74.06% 35.99% 54.66%
ADDA zero-shot 42.71% 65.43% 62.81% 36.08% 51.76%

GFK+KNN zero-shot 30.79% 51.50% 53.72% 34.17% 42.55%
CrossFi zero-shot 64.81% 72.79% 74.38% 40.46% 63.11%

Tian et al. zero-shot 68.13% 55.86% 61.72% 42.10% 56.95%
EEG zero-shot 59.75% 64.63% 69.53% 42.15% 59.02%

Table 13: One-shot experimental results
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Experiment Result

❑ Few-shot Comparison:

Figure 22: Few-shot experiment result
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Experiment Result

❑ Training Process Visualization:

- KNN-MMD exhibits the highest accuracy and stability.
- Even when the training accuracy approaches nearly 100%, the testing accuracy of KNN-MMD
continues to increase steadily, which can be attributed to local alignment.

(a) MK-MMD (b) Siamese (c) KNN-MMD (shot number=1)

Figure 23: training process of three cross-domain methods
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Experiment Result

❑ Embedding Result Visualization:

(a) ResNet
(no alignment)

(b) MK-MMD
(global alignment)

(c) KNN-MMD
(shot number=1)

(d) Theoretical Upper Bound
(local alignment)

Figure 24: Data dimension reduction results of embedding results from different models: Different colors represent different categories. The
circles represent samples from the source domain, and the crosses represent samples from the target domain.
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Background: Current Cross-domain Wi-Fi Sensing Methods

❑ Few-shot Methods: Require some labeled samples from the target domain, which cannot always
be satisfied in practice.

❑ Zero-shot Domain Generalization (DG) Methods: Zero-shot methods do not require any
labeled data from the target domain. However, DG typically requires multiple different source
domains.

❑ Zero-shot DAL Methods: Currently, there are no methods specifically aimed at Wi-Fi sensing.
Additionally, methods in machine learning, such as MK-MMD, have been shown to be limitedly
efficient in our KNN-MMD work.

⇒ Research Gap: Zero-shot Method for Single Source Domain Scenario
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Motivation: Siamese Network

❑ Siamese Network:
- Train a neural network to extract general features using source domain data.
- Successfully calculates the similarity of two samples from the target domain.

⇒ Siamese networks demonstrate excellent performance in one-shot tasks. Can we expand this
approach to more general scenarios?

(a) Network architecture (b) Working principle

Figure 25: Siamese network
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Method Framework

❑ Task Scenarios:

- In-domain
- Few-shot
- One-shot
- Zero-shot
- New-class

❑ Process:

- Template generation
- Classifying by
comparison

Figure 26: Workflow of CrossFi

1Zijian Zhao, Tingwei Chen, Zhijie Cai, Xiaoyang Li, Hang Li, Qimei Chen, Guangxu Zhu*, “CrossFi: A Cross Domain Wi-Fi Sensing
Framework Based on Siamese Network” (IEEE Internet of Things Journal (IOT-J))

2Zijian Zhao, Guangxu Zhu, Kaifeng Han, Xiaoyang Li, Hang Li, “Method for Classifying Data Using Model Based on Few-Shot
Learning and Related Equipment” (Patent Application Number: 2024108392137, 2024)
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Network Structure

❑ Cross-domain Siamese Network (CSi-Net):
- Extract features using ResNet.
- Calculate similarity with QK-attention.

❑ Weight-Net:
- Calculate sample quality based on the similarity computed by CSi-Net.
- Generate templates using sample quality as mixing weights.

(a) CSi-Net (b) Weight-Net

Figure 27: Network structure
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Zero-shot Template Generation Method

❑ Select the samples with the highest similarity to the templates from the source domain as
the templates for the target domain.

Figure 28: Template generation method of target domain in zero-shot scenario
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Experiment Result

❑ In-domain Scenario:
Method Gesture Recognition People Identification

ResNet-18 80.75% 86.75%
WiGRUNT 70.46% 97.86%

Zhuravchak et al. 56.93% 88.61%
Yang et al. 43.75% 87.78%
Ding et al. 43.75% 61.72%

AutoFi (MLP-based) 48.22% 89.45%
AutoFi (CNN-based) 89.55% 97.74%

CSI-BERT 74.55% 97.92%

CrossFi 98.17% 99.97%

Table 14: In-domain experiment❑ One-shot Scenario:
Cross Domain New Class

Method Gesture Recognition People Identification Gesture Recognition People Identification
Siamese 70.40% 82.87% 66.41% 80.92%

AutoFi (MLP-based) 24.62% 24.71% 43.82% 81.75%
AutoFi (CNN-based) 27.05% 36.14% 74.13% 86.58%

Yang et al. 67.21% 74.22% 58.74% 49.00%
Ding et al. 39.14% 59.50% – –

CrossFi w/ MK-MMD 91.72% 93.01% 80.62% 73.66%
CrossFi w/o MK-MMD 84.47% 87.50% 84.75% 81.97%

Table 15: One-shot experiment
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Experiment Result

❑ Few-shot Experiment:

Figure 29: Few-shot experiment
Zijian Zhao Wi-Fi Sensing via Deep Learning MATH6916 39 / 49



Experiment Result

❑ Zero-shot Experiment:
Method Gesture Recognition People Identification

ResNet-18 40.84% 70.50%
ADDA 42.71% 65.43%
DANN 41.41% 67.18%
MMD 47.92% 67.25%

MK-MMD 40.36% 66.47%
GFK+KNN 30.79% 51.05%

CrossFi w/ MK-MMD 62.60% 72.79%
CrossFi w/o MK-MMD 64.81% 72.46%

Table 13: Zero-shot experiment❑ Expanded Experiment:

Figure 30: Expanded experiment
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Ablation Study

❑ Effect of Similarity Calculation Methods:
Gesture Recognition

Full Shot One Shot Zero Shot New Class
Gaussian Distance 95.58% 84.47% 20.97% 74.49%
Cosine Similarity 91.64% 77.17% 46.44% 74.36%
Multi-Attention 98.17% 62.51% 64.81% 84.75%

People Identification
Full Shot One Shot Zero Shot New Class

Gaussian Distance 99.74% 87.50% 38.48% 80.53%
Cosine Similarity 99.97% 83.72% 71.16% 74.60%
Multi-Attention 99.97% 68.04% 72.46% 81.97%

Table 16: Ablation study in similarity computation method

❑ Effect of Template Generation Methods:
Gesture Recognition People Identification
Full Shot Zero Shot Full Shot Zero Shot

Random 94.79% 58.83% 98.17% 60.42%
Average 91.90% 56.39% 99.74% 68.95%

Weight-Net 98.17% 64.81% 99.97% 72.46%

Table 17: Ablation study in template generation method
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Discussions

❑ Attention & Gaussian Distance – Which is better?

- The Gaussian distance method performs better when the source domain and target domain
have a high similarity.

- When the domain gap is large, the attention-based method can capture the relationship
between the two domains more effectively.

Source Domain: ID 0
Target Domain ID 4 6 7 5
Multi-Attention 94.79% 71.57% 93.29% 65.40%

Gaussian Distance 82.18% 66.94% 96.87% 77.34%
Performance Gap -12.61% -4.63% 3.58% 11.94%

Benchmark ResNet 19.51% 25.13% 31.82% 39.92%

Table 18: One-shot experiment
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Discussions

❑ Why is Weight-Net useful?

Gaussian Noise Variance 0 2 4 6 8 10
Sample Quality Score 0.4690 0.4673 0.4422 0.4474 0.4456 0.4278

Table 19: Relationship between sample quality score and added Gaussian noise standard deviation

❑ Model Scale vs. Model Performance
Backbone Model Model Parameter Model Size GPU Occupation WiGesture Office-Caltech10

ResNet34 4.26M 163.39MB 1.26GB 89.18% 89.05%
ResNet50 4.72M 180.96MB 2.36GB 87.36% 89.91%
ResNet101 8.53M 326.46MB 3.71GB 87.33% 89.07%

ResNet18 2.24M 85.66MB 0.93GB 80.42% 87.78%
Integer Quantization 2.24M 21.62MB 0.63GB 80.36% 84.03%

Pruning (20%) 1.79M 85.66MB 0.93GB 80.22% 84.81%

Table 20: Comparison of complexity and performance in one-Shot cross-domain scenario

Zijian Zhao Wi-Fi Sensing via Deep Learning MATH6916 41 / 49



Outline

1 Research Overview

2 CSI-BERT: A Multifunctional Framework for CSI Time Series

3 KNN-MMD: An Effective Framework for Practical Cross-Domain Wi-Fi Sensing

4 CrossFi: A Multi-scenario Framework for Cross-Domain Wi-Fi Sensing

5 LoFi: IoT-Enabled Wi-Fi Sensing Deployment

6 Concluding Remarks

Zijian Zhao Wi-Fi Sensing via Deep Learning MATH6916 42 / 49



Real-time Wi-Fi Sensing System

Figure 31: Workflow of real-time Wi-Fi sensing system

1Zijian Zhao, Guangxu Zhu, Shen Chao, Shi Qingjiang, Han Kaifeng, “Personnel Detection Method, Device, Electronic Equipment, and
Storage Medium” (Patent Application Number: 2024105419689, 2024)
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Challenge: Lack of Data

❑ Existing Wi-Fi Localization Dataset Collection Methods:

- LiDAR-based Method: precise but expensive
- Manual Tagging: coarse-grained

❑ Existing Heterogeneous Public Wi-Fi Sensing Datasets:

- Different Sampling Rates
- Different Devices
- Different Data Formats
- Different Domains
- . . .

⇒ A cheap and easy method is needed for users to collect their own datasets quickly.
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Method: Vision-Aided Wi-Fi Localization Dataset Collection System

❑ Workflow of LoFi:
- Step 1: Collect CSI and image data simultaneously.
- Step 2: Localize the person in pixel space.
- Step 3: Transfer pixel space to physical space.
- Step 4: Align CSI and image by timestamp.

Figure 32: Workflow of LoFi

1Zijian Zhao, Tingwei Chen, Fanyi Meng, Zhijie Cai, Hang Li, Xiaoyang Li, Guangxu Zhu*, “LoFi: Vision-Aided Label Generator for
Wi-Fi Localization and Tracking Sensing” (under review, IEEE Wireless Communications Letters (WCL))
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Benchmark Methods in LoFi

(a) Convolution-based methods (b) series-based network

Figure 33: Benchmark methods for LoFi dataset

Zijian Zhao Wi-Fi Sensing via Deep Learning MATH6916 46 / 49



Benchmark Methods in LoFi

❑ Our experiment first demonstrates the potential of Wi-Fi localization using a single RX-TX pair
with a single antenna.

Metric
Methods Convolution-based Methods Series-based Methods

CNN ResNet RNN GRU LSTM CSI-BERT
Error Mean 0.8745 0.5830 0.8705 0.9413 0.8643 0.6991

Error Standard Deviation 0.3177 0.3475 0.2802 0.3217 0.2475 0.3063

Classification Accuracy (6 classes) 31.99% 55.50% 53.29% 49.41% 53.50% 60.07%
Classification Accuracy (4 classes) 42.03% 62.54% 61.92% 56.00% 62.15% 61.93%
Classification Accuracy (2 classes) 62.84% 82.98% 84.47% 73.56% 73.98% 75.63%

Table 21: Experiment result

Figure 33: Cumulative Distribution Function (CDF) of the error
Zijian Zhao Wi-Fi Sensing via Deep Learning MATH6916 46 / 49



Outline

1 Research Overview

2 CSI-BERT: A Multifunctional Framework for CSI Time Series

3 KNN-MMD: An Effective Framework for Practical Cross-Domain Wi-Fi Sensing

4 CrossFi: A Multi-scenario Framework for Cross-Domain Wi-Fi Sensing

5 LoFi: IoT-Enabled Wi-Fi Sensing Deployment

6 Concluding Remarks

Zijian Zhao Wi-Fi Sensing via Deep Learning MATH6916 47 / 49



Concluding Remarks

❑ Project 1: CSI-BERT: A Multifunctional Framework for CSI Time Series

- A foundation model for multiple CSI-related tasks, including recovery, prediction, and
classification.

- Proposed CSI-embedding and time-embedding layers improve the model’s capacity to capture
the inner relationships of CSI sequences.

❑ Project 2: KNN-MMD: An Effective Framework for Practical Cross-Domain Wi-Fi Sensing

- A few-shot method for cross-domain Wi-Fi sensing.
- Proves that in domain alignment, what we need is actually local alignment rather than global
alignment.
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Concluding Remarks

❑ Project 3: CrossFi: A Multi-Scenario Framework for Cross-Domain Wi-Fi Sensing

- A multi-scenario Wi-Fi sensing method for in-domain, few-shot cross-domain, few-shot
new-class, and zero-shot cross-domain scenarios.

- Improves the performance of the Siamese network using an attention mechanism and expands
its application scenarios with Weight-Net.

❑ Project 4: LoFi: IoT-Enabled Wi-Fi Sensing Deployment

- A vision-aided method for Wi-Fi localization and tracking dataset collection.
- Reduces the complexity and expense of Wi-Fi sensing dataset collection.
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Future Extensions

❑ Develop a Large Foundation Model for Wi-Fi Sensing

- Develop a heterogeneous large foundation model to make full use of public datasets with
different data structures.

- Explore the scaling law in Wi-Fi sensing (especially the zero-shot ability).

❑ Transfer Knowledge from Other Modalities to Wi-Fi

- Develop a cross-modal knowledge distillation method to transfer knowledge from strong
modalities like images to the CSI modality.

- Improve the robustness of Wi-Fi sensing by learning from other modalities.

1Haolong Chen, Hanzhi Chen, Zijian Zhao, Kaifeng Han*, Guangxu Zhu*, Yichen Zhao, Ying Du, Wei Xu, Qingjiang Shi, “An Overview
of Domain-specific Foundation Model: Key Technologies, Applications and Challenges” (under review, Science China Information Sciences
(SCIS))
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